878 research outputs found

    Explanatory and Causality Analysis in Software Engineering

    Get PDF
    Software fault proneness and software development efforts are two key areas of software engineering. Improving them will significantly reduce the cost and promote good planning and practice in developing and managing software projects. Traditionally, studies of software fault proneness and software development efforts were focused on analysis and prediction, which can help to answer questions like `when’ and `where’. The focus of this dissertation is on explanatory and causality studies that address questions like `why’ and `how’. First, we applied a case-control study to explain software fault proneness. We found that Bugfixes (Prerelease bugs), Developers, Code Churn, and Age of a file are the main contributors to the Postrelease bugs in some of the open-source projects. In terms of the interactions, we found that Bugfixes and Developers reduced the risk of post release software faults. The explanatory models were tested for prediction and their performance was either comparable or better than the top-performing classifiers used in related studies. Our results indicate that software project practitioners should pay more attention to the prerelease bug fixing process and the number of Developers assigned, as well as their interaction. Also, they need to pay more attention to the new files (less than one year old) which contributed significantly more to Postrelease bugs more than old files. Second, we built a model that explains and predicts multiple levels of software development effort and measured the effects of several metrics and their interactions using categorical regression models. The final models for the three data sets used were statistically fit, and performance was comparable to related studies. We found that project size, duration, the existence of any type of faults, the use of first- or second generation of programming languages, and team size significantly increased the software development effort. On the other side, the interactions between duration and defective project, and between duration and team size reduced the software development effort. These results suggest that software practitioners should pay extra attention to the time of the project and the team size assigned for every task because when they increased from a low to a higher level, they significantly increased the software development effort. Third, a structural equation modeling method was applied for causality analysis of software fault proneness. The method combined statistical and regression analysis to find the direct and indirect causes for software faults using partial least square path modeling method. We found direct and indirect paths from measurement models that led to software postrelease bugs. Specifically, the highest direct effect came from the change request, while changing the code had a minor impact on software faults. The highest impact of the code change resulted from the change requests (either for bug fixing or refactoring). Interestingly, the indirect impact from code characteristics to software fault proneness was higher than the direct impact. We found a similar level of direct and indirect impact from code characteristics to code change

    Predicting software faults in large space systems using machine learning techniques

    Get PDF
    Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a variety of engineering problems including the prediction of failure, fault, and defect-proneness as the space system software becomes complex. One of the most active areas of recent research in ML has been the use of ensemble classifiers. How ML techniques (or classifiers) could be used to predict software faults in space systems, including many aerospace systems is shown, and further use ensemble individual classifiers by having them vote for the most popular class to improve system software fault-proneness prediction. Benchmarking results on four NASA public datasets show the Naive Bayes classifier as more robust software fault prediction while most ensembles with a decision tree classifier as one of its components achieve higher accuracy rates

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling

    Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics

    Get PDF
    Complexity metrics have been intensively studied in predicting fault-prone software modules. However, little work is done in studying how to effectively use the complexity metrics and the prediction models under realistic conditions. In this paper, we present a study showing how to utilize the prediction models generated from existing projects to improve the fault detection on other projects. The binary logistic regression method is used in studying publicly available data of five commercial products. Our study shows (1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, which will result in higher maintenance effort. We further suggest that in order to improve model prediction efficiency, the selection of source datasets and the determination of cut-off values should be based on specific properties of a project. So far, there are no general rules that have been found and reported to follow

    An Empirical Study on Dependence Clusters for Effort-Aware Fault-Proneness Prediction

    Get PDF
    A dependence cluster is a set of mutually inter-dependent program elements. Prior studies have found that large dependence clusters are prevalent in software systems. It has been suggested that dependence clusters have potentially harmful effects on software quality. However, little empirical evidence has been provided to support this claim. The study presented in this paper investigates the relationship between dependence clusters and software quality at the function-level with a focus on effort-aware fault-proneness prediction. The investigation first analyzes whether or not larger dependence clusters tend to be more fault-prone. Second, it investigates whether the proportion of faulty functions inside dependence clusters is significantly different from the proportion of faulty functions outside dependence clusters. Third, it examines whether or not functions inside dependence clusters playing a more important role than others are more fault-prone. Finally, based on two groups of functions (i.e., functions inside and outside dependence clusters), the investigation considers a segmented fault-proneness prediction model. Our experimental results, based on five well-known open-source systems, show that (1) larger dependence clusters tend to be more fault-prone; (2) the proportion of faulty functions inside dependence clusters is significantly larger than the proportion of faulty functions outside dependence clusters; (3) functions inside dependence clusters that play more important roles are more fault-prone; (4) our segmented prediction model can significantly improve the effectiveness of effort-aware fault-proneness prediction in both ranking and classification scenarios. These findings help us better understand how dependence clusters influence software quality

    Software defect prediction using Bayesian networks

    Get PDF
    There are lots of different software metrics discovered and used for defect prediction in the literature. Instead of dealing with so many metrics, it would be practical and easy if we could determine the set of metrics that are most important and focus on them more to predict defectiveness. We use Bayesian networks to determine the probabilistic influential relationships among software metrics and defect proneness. In addition to the metrics used in Promise data repository, we define two more metrics, i.e. NOD for the number of developers and LOCQ for the source code quality. We extract these metrics by inspecting the source code repositories of the selected Promise data repository data sets. At the end of our modeling, we learn the marginal defect proneness probability of the whole software system, the set of most effective metrics, and the influential relationships among metrics and defectiveness. Our experiments on nine open source Promise data repository data sets show that response for class (RFC), lines of code (LOC), and lack of coding quality (LOCQ) are the most effective metrics whereas coupling between objects (CBO), weighted method per class (WMC), and lack of cohesion of methods (LCOM) are less effective metrics on defect proneness. Furthermore, number of children (NOC) and depth of inheritance tree (DIT) have very limited effect and are untrustworthy. On the other hand, based on the experiments on Poi, Tomcat, and Xalan data sets, we observe that there is a positive correlation between the number of developers (NOD) and the level of defectiveness. However, further investigation involving a greater number of projects is needed to confirm our findings.Publisher's VersionAuthor Pre-Prin
    • …
    corecore