107 research outputs found

    Deploying Jupyter Notebooks at scale on XSEDE resources for Science Gateways and workshops

    Full text link
    Jupyter Notebooks have become a mainstream tool for interactive computing in every field of science. Jupyter Notebooks are suitable as companion applications for Science Gateways, providing more flexibility and post-processing capability to the users. Moreover they are often used in training events and workshops to provide immediate access to a pre-configured interactive computing environment. The Jupyter team released the JupyterHub web application to provide a platform where multiple users can login and access a Jupyter Notebook environment. When the number of users and memory requirements are low, it is easy to setup JupyterHub on a single server. However, setup becomes more complicated when we need to serve Jupyter Notebooks at scale to tens or hundreds of users. In this paper we will present three strategies for deploying JupyterHub at scale on XSEDE resources. All options share the deployment of JupyterHub on a Virtual Machine on XSEDE Jetstream. In the first scenario, JupyterHub connects to a supercomputer and launches a single node job on behalf of each user and proxies back the Notebook from the computing node back to the user's browser. In the second scenario, implemented in the context of a XSEDE consultation for the IRIS consortium for Seismology, we deploy Docker in Swarm mode to coordinate many XSEDE Jetstream virtual machines to provide Notebooks with persistent storage and quota. In the last scenario we install the Kubernetes containers orchestration framework on Jetstream to provide a fault-tolerant JupyterHub deployment with a distributed filesystem and capability to scale to thousands of users. In the conclusion section we provide a link to step-by-step tutorials complete with all the necessary commands and configuration files to replicate these deployments.Comment: 7 pages, 3 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Jetstream: A self-provisoned, scalable science and engineering cloud environment

    Get PDF
    The paper describes the motivation behind Jetstream, its functions, hardware configuration, software environment, user interface, design, use cases, relationships with other projects such as Wrangler and iPlant, and challenges in implementation.Funded by the National Science Foundation Award #ACI - 144560

    Jetstream: A Distributed Cloud Infrastructure for Under-resourced Higher Education Communities

    Get PDF
    The US National Science Foundation (NSF) in 2015 awarded funding for a first-of-a-kind distributed cyberinfrastructure (DCI) system called Jetstream. Jetstream will be the NSF’s first production cloud for general-purpose science and engineering research and education. Jetstream, scheduled for production in January 2016, will be based on the OpenStack cloud environment software with a menu-driven interface to make it easy for users to select a pre-composed Virtual Machine (VM) to perform a particular discipline-specific analysis. Jetstream will use the Atmosphere user interface developed as part of iPlant, providing a low barrier to use by practicing scientists, engineers, educators, and students, and Globus services from the University of Chicago for seamless integration into the national cyberinfrastructure fabric. The team implementing Jetstream has as their primary mission extending the reach of the NSF’s eXtreme Digital (XD) program to researchers, educators, and research students who have not previously used NSF XD program resources, including those in communities and at institutions that traditionally lack significant cyberinfrastructure resources. We will, for example, use virtual Linux Desktops to deliver DCI capabilities supporting research and research education at small colleges and universities, including Historically Black Colleges and Universities (HBCUs), Minority Serving Institutions (MSIs), Tribal colleges, and higher education institutions in states designated by the NSF as eligible for funding via the Experimental Program to Stimulate Competitive Research (EPSCoR). Jetstream will be a novel distributed cyberinfrastructure, with production components in Indiana and Texas. In particular, Jetstream will deliver virtual Linux desktops to tablet devices and PDAs with reasonable responsiveness running over cellular networks. This paper will discuss design and application plans for Jetstream as a novel Distributed CyberInfrastructure system for research education.National Science Foundation (NSF) grant ACI-1445604. NSF grant OCI-1053575 for campus bridging activitie

    Accelerating complex modeling workflows in CyberWater using on-demand HPC/Cloud resources

    Get PDF
    Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources. However, existing WMSs do not simultaneously support local interactive workflow environments and HPC resources. In this paper, we present an on-demand access mechanism to remote HPC resources from desktop/laptop-based workflow management software to compose, monitor and analyze scientific workflows in the CyberWater project. Cyber-Water is an open-data and open-modeling software framework for environmental and water communities. In this work, we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In particular, we design and implement the LaunchAgent library, which can be integrated into the local desktop environment to allow on-demand usage of remote resources for hydrology-related workflows. LaunchAgent manages authentication to remote resources, prepares the computationally-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors the quality of services for the users. LaunchAgent interacts seamlessly with other existing components in CyberWater, which is now able to provide advantages of both feature-rich desktop software experience and increased computation power through on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrology workflow that consists of both local and remote tasks can be constructed and show that the added on-demand HPC/Cloud usage helps speeding up hydrology workflows while allowing intuitive workflow configurations and execution using a desktop graphical user interface

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations
    • …
    corecore