9,610 research outputs found

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    Identification of viscoplastic parameters and characterization of LĂŒders behaviour using digital image correlation and the virtual fields method

    No full text
    In this study, tensile loading experiments are performed on notched steel bars at an average applied strain rate of 1s-1. Displacement fields are measured across the specimen by coupling digital image correlation (DIC) with imaging using high speed CCD cameras (4796 fps). Results from the experiments indicate the presence of local strain rates ranging from 0.1 to 10s-1 in the notched specimens. The heterogeneity of the strain rate fields provides suitable conditions for determining simultaneously all the elasto-visco-plastic constitutive parameters governing the material behavior. For that, the whole stress fields are reconstructed in the specimen using the full-field deformation measurements. This reconstruction is repeated with different constitutive parameters until the average stress in the specimen matches the one measured with the load cell response. Perzyna’s model is firstly considered for the reconstruction of stresses but it is shown to be unsuited for providing the drop in the average stress that is systematically detected at the onset of plasticity by the load cell. This drop is attributed to the sudden occurrence of plasticity in the material due to LĂŒders effect. A modified model for elasto-visco-plasticity taking account of LĂŒders behavior in the material is considered afterwards. It yields a better agreement between the reconstructed stresses and the load cell response, and a more accurate identification of the parameters driving the visco-plastic model. Eventually, it is shown how to use DIC measurements for replacing the load cell measurements when the transient effects in the test reach the resonance frequency of the load cel

    Improving SLI Performance in Optically Challenging Environments

    Get PDF
    The construction of 3D models of real-world scenes using non-contact methods is an important problem in computer vision. Some of the more successful methods belong to a class of techniques called structured light illumination (SLI). While SLI methods are generally very successful, there are cases where their performance is poor. Examples include scenes with a high dynamic range in albedo or scenes with strong interreflections. These scenes are referred to as optically challenging environments. The work in this dissertation is aimed at improving SLI performance in optically challenging environments. A new method of high dynamic range imaging (HDRI) based on pixel-by-pixel Kalman filtering is developed. Using objective metrics, it is show to achieve as much as a 9.4 dB improvement in signal-to-noise ratio and as much as a 29% improvement in radiometric accuracy over a classic method. Quality checks are developed to detect and quantify multipath interference and other quality defects using phase measuring profilometry (PMP). Techniques are established to improve SLI performance in the presence of strong interreflections. Approaches in compressed sensing are applied to SLI, and interreflections in a scene are modeled using SLI. Several different applications of this research are also discussed
    • 

    corecore