18,699 research outputs found

    Using the floor control mechanism in distributed multimedia presentation system

    Get PDF
    [[abstract]]Establishing a Web-based distributed multimedia presentation system environment is technical challenge. In this paper, we describe how to present different multimedia objects indispensably on a Web presentation system with a floor control mechanism, to be used in a distance learning environment. The distributed approach is based on an extended timed Petri net model. Using the characterization of extended timed Petri nets, we express the temporal behavior of multimedia objects. Then we introduce the concepts of user interaction. The main goal of our system is to provide a feasible method to represent a schedule and navigate different multimedia objects with user interaction. In addition, users can dynamically modify and verify different kinds of conditions during the presentation. To verify the structural mechanism, we implement an algorithm using the Petri net diagram, analyzing the model by a time schedule of multimedia objects, and we produce a synchronous set of multimedia objects with respect to the time duration. In particular, we consider the interactive facilities needed to support the distance learning requirements. We propose a floor control mechanism which provides four types of control (free access, equal control, group discussion and direct contact). These control mechanisms are sufficient for use in a distance learning environment[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20010416~20010416[[conferencelocation]]Mesa, United State

    A Distributed Multimedia Presentation System with Floor Control Mode Based on Extended Timed Petri Nets

    Get PDF
    [[abstract]]Communication over Internet is growing increasingly and will have profound implications for our economy, culture, society and education. Currently, multimedia presentation technologies among the network are most often use in many communication services. Examples of those applications include video-on demand, interactive TV and the communication tools on a distance learning system and so on. In this paper, we describe how to present different multimedia objects on a web presentation system with floor control mechanism as a result of the distance learning environment indispensably. The distributed approach is based on an extended timed Petri net model. Using characterization of extended time Petri net, we express the temporal behavior of multimedia objects; on the other hand, we introduce the concepts of user interaction. The main goal of our system is to provide a feasible method to represent a schedule and navigation of different multimedia objects with user interaction. In addition, users can dynamically modify and verify different kinds of conditions during the presentation. To verify the structural mechanism, we implement an algorithm using the Petri net diagram, analyzing the model by timeschedule of multimedia objects, and produce a synchronous set of multimedia objects with respect to time duration. Specially, we consider the interactive facilities to support the distance learning requirement. We propose a floor control mechanism, which provides four types of control (free access, equal control, group discussion, and direct contact). These control mechanisms are sufficient to the use of distance learning environment.[[sponsorship]]Ministry of Education,Republic of China; National Science Council,Republic of China; The Computer Society of the Republic of China[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20001206~20001208[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]嘉義縣, 臺

    USAge of Groupware in Software Engineering Education at the Cscw Laboratory of University Duisburg-essen: Possibilities and Limitations

    Full text link
    This paper analyzes the application level in CSCW laboratory there are Electronic meeting rooms, Video Conferencing, Desktop Conference (Passenger), and BSCW system which conducting in The University Duisburg – Essen Germany. This analysis included short analysis and discussion about possibilities and limitation of each experiment followed by outlook how this lab can be further developed.Multi-user to Multipoint Videoconferences is introduced to cover all of devices join to the conferences. A computer network, PSTN (Public Switched Telephone Network), ISDN Phone, Wireless Infrastructures (accessed by laptop, smart phone, PDA) and videoconferences systems is proposed to be integrate

    URBANO: A Tour-Guide Robot Learning to Make Better Speeches

    Get PDF
    —Thanks to the numerous attempts that are being made to develop autonomous robots, increasingly intelligent and cognitive skills are allowed. This paper proposes an automatic presentation generator for a robot guide, which is considered one more cognitive skill. The presentations are made up of groups of paragraphs. The selection of the best paragraphs is based on a semantic understanding of the characteristics of the paragraphs, on the restrictions defined for the presentation and by the quality criteria appropriate for a public presentation. This work is part of the ROBONAUTA project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality of the presentations. To achieve this goal, the system has to perform the optimized decision making, in different phases. The modeling of the quality index of the presentation is made using fuzzy logic and it represents the beliefs of the robot about what is good, bad, or indifferent about a presentation. This fuzzy system is used to select the most appropriate group of paragraphs for a presentation. The beliefs of the robot continue to evolving in order to coincide with the opinions of the public. It uses a genetic algorithm for the evolution of the rules. With this tool, the tour guide-robot shows the presentation, which satisfies the objectives and restrictions, and automatically it identifies the best paragraphs in order to find the most suitable set of contents for every public profil

    BIBS: A Lecture Webcasting System

    Get PDF
    The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning

    Industrial multimedia put into practice

    Get PDF
    Recent developments in the factory floor technologies together with the widespread use of TCP/IP and the Internet are increasing the eagerness to support a new wide class of devices and applications, such as industrial multimedia applications, in factory floor networks. This paper presents how this new field of applications can be put into practice, via a manufacturing cell field trial being implemented. This manufacturing automation field trial involves the use of traditional distributed computer control systems and 'factory-floor-oriented' multimedia (e.g. voice, video) application services

    Throughput Scaling Of Convolution For Error-Tolerant Multimedia Applications

    Full text link
    Convolution and cross-correlation are the basis of filtering and pattern or template matching in multimedia signal processing. We propose two throughput scaling options for any one-dimensional convolution kernel in programmable processors by adjusting the imprecision (distortion) of computation. Our approach is based on scalar quantization, followed by two forms of tight packing in floating-point (one of which is proposed in this paper) that allow for concurrent calculation of multiple results. We illustrate how our approach can operate as an optional pre- and post-processing layer for off-the-shelf optimized convolution routines. This is useful for multimedia applications that are tolerant to processing imprecision and for cases where the input signals are inherently noisy (error tolerant multimedia applications). Indicative experimental results with a digital music matching system and an MPEG-7 audio descriptor system demonstrate that the proposed approach offers up to 175% increase in processing throughput against optimized (full-precision) convolution with virtually no effect in the accuracy of the results. Based on marginal statistics of the input data, it is also shown how the throughput and distortion can be adjusted per input block of samples under constraints on the signal-to-noise ratio against the full-precision convolution.Comment: IEEE Trans. on Multimedia, 201
    corecore