170 research outputs found

    Optimizing the Decoding Complexity of PEG-Based Methods with an Improved Hybrid Iterative/Gaussian Elimination Decoding Algorithm

    Get PDF
    This paper focuses on optimizing the decoding complexity of the progressive-edge-growth-based (PEG-based) method for the extended grouping of radio frequency identification (RFID) tags using a hybrid iterative/Gaussian elimination decoding algorithm. To further reduce the decoding time, the hybrid decoding is improved by including an early stopping criterion to avoid unnecessary iterations of iterative decoding for undecodable blocks. Various simulations have been carried out to analyse and assess the performance achieved with the PEG-based method under the improved hybrid decoding, both in terms of missing recovery capabilities and decoding complexities. Simulation results are presented, demonstrating that the improved hybrid decoding achieves the optimal missing recovery capabilities of full Gaussian elimination decoding at a lower complexity, as some of the missing tag identifiers are recovered iteratively

    Improving Group Integrity of Tags in RFID Systems

    Get PDF
    Checking the integrity of groups containing radio frequency identification (RFID) tagged objects or recovering the tag identifiers of missing objects is important in many activities. Several autonomous checking methods have been proposed for increasing the capability of recovering missing tag identifiers without external systems. This has been achieved by treating a group of tag identifiers (IDs) as packet symbols encoded and decoded in a way similar to that in binary erasure channels (BECs). Redundant data are required to be written into the limited memory space of RFID tags in order to enable the decoding process. In this thesis, the group integrity of passive tags in RFID systems is specifically targeted, with novel mechanisms being proposed to improve upon the current state of the art. Due to the sparseness property of low density parity check (LDPC) codes and the mitigation of the progressive edge-growth (PEG) method for short cycles, the research is begun with the use of the PEG method in RFID systems to construct the parity check matrix of LDPC codes in order to increase the recovery capabilities with reduced memory consumption. It is shown that the PEG-based method achieves significant recovery enhancements compared to other methods with the same or less memory overheads. The decoding complexity of the PEG-based LDPC codes is optimised using an improved hybrid iterative/Gaussian decoding algorithm which includes an early stopping criterion. The relative complexities of the improved algorithm are extensively analysed and evaluated, both in terms of decoding time and the number of operations required. It is demonstrated that the improved algorithm considerably reduces the operational complexity and thus the time of the full Gaussian decoding algorithm for small to medium amounts of missing tags. The joint use of the two decoding components is also adapted in order to avoid the iterative decoding when the missing amount is larger than a threshold. The optimum value of the threshold value is investigated through empirical analysis. It is shown that the adaptive algorithm is very efficient in decreasing the average decoding time of the improved algorithm for large amounts of missing tags where the iterative decoding fails to recover any missing tag. The recovery performances of various short-length irregular PEG-based LDPC codes constructed with different variable degree sequences are analysed and evaluated. It is demonstrated that the irregular codes exhibit significant recovery enhancements compared to the regular ones in the region where the iterative decoding is successful. However, their performances are degraded in the region where the iterative decoding can recover some missing tags. Finally, a novel protocol called the Redundant Information Collection (RIC) protocol is designed to filter and collect redundant tag information. It is based on a Bloom filter (BF) that efficiently filters the redundant tag information at the tag’s side, thereby considerably decreasing the communication cost and consequently, the collection time. It is shown that the novel protocol outperforms existing possible solutions by saving from 37% to 84% of the collection time, which is nearly four times the lower bound. This characteristic makes the RIC protocol a promising candidate for collecting redundant tag information in the group integrity of tags in RFID systems and other similar ones

    Security protocols for EPC class-1 Gen-2 RFID multi-tag systems

    Full text link
    The objective of the research is to develop security protocols for EPC C1G2 RFID Passive Tags in the areas of ownership transfer and grouping proof

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID

    Design and Verification of Specialised Security Goals for Protocol Families

    Get PDF
    Communication Protocols form a fundamental backbone of our modern information networks. These protocols provide a framework to describe how agents - Computers, Smartphones, RFID Tags and more - should structure their communication. As a result, the security of these protocols is implicitly trusted to protect our personal data. In 1997, Lowe presented ‘A Hierarchy of Authentication Specifications’, formalising a set of security requirements that might be expected of communication protocols. The value of these requirements is that they can be formally tested and verified against a protocol specification. This allows a user to have confidence that their communications are protected in ways that are uniformly defined and universally agreed upon. Since that time, the range of objectives and applications of real-world protocols has grown. Novel requirements - such as checking the physical distance between participants, or evolving trust assumptions of intermediate nodes on the network - mean that new attack vectors are found on a frequent basis. The challenge, then, is to define security goals which will guarantee security, even when the nature of these attacks is not known. In this thesis, a methodology for the design of security goals is created. It is used to define a collection of specialised security goals for protocols in multiple different families, by considering tailor-made models for these specific scenarios. For complex requirements, theorems are proved that simplify analysis, allowing the verification of security goals to be efficiently modelled in automated prover tools

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Supporting Collaborative Learning in Computer-Enhanced Environments

    Full text link
    As computers have expanded into almost every aspect of our lives, the ever-present graphical user interface (GUI) has begun facing its limitations. Demanding its own share of attention, GUIs move some of the users\u27 focus away from the task, particularly when the task is 3D in nature or requires collaboration. Researchers are therefore exploring other means of human-computer interaction. Individually, some of these new techniques show promise, but it is the combination of multiple approaches into larger systems that will allow us to more fully replicate our natural behavior within a computing environment. As computers become more capable of understanding our varied natural behavior (speech, gesture, etc.), the less we need to adjust our behavior to conform to computers\u27 requirements. Such capabilities are particularly useful where children are involved, and make using computers in education all the more appealing. Herein are described two approaches and implementations of educational computer systems that work not by user manipulation of virtual objects, but rather, by user manipulation of physical objects within their environment. These systems demonstrate how new technologies can promote collaborative learning among students, thereby enhancing both the students\u27 knowledge and their ability to work together to achieve even greater learning. With these systems, the horizon of computer-facilitated collaborative learning has been expanded. Included among this expansion is identification of issues for general and special education students, and applications in a variety of domains, which have been suggested

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Minimal Infrastructure Radio Frequency Home Localisation Systems

    Get PDF
    The ability to track the location of a subject in their home allows the provision of a number of location based services, such as remote activity monitoring, context sensitive prompts and detection of safety critical situations such as falls. Such pervasive monitoring functionality offers the potential for elders to live at home for longer periods of their lives with minimal human supervision. The focus of this thesis is on the investigation and development of a home roomlevel localisation technique which can be readily deployed in a realistic home environment with minimal hardware requirements. A conveniently deployed Bluetooth ® localisation platform is designed and experimentally validated throughout the thesis. The platform adopts the convenience of a mobile phone and the processing power of a remote location calculation computer. The use of Bluetooth ® also ensures the extensibility of the platform to other home health supervision scenarios such as wireless body sensor monitoring. Central contributions of this work include the comparison of probabilistic and nonprobabilistic classifiers for location prediction accuracy and the extension of probabilistic classifiers to a Hidden Markov Model Bayesian filtering framework. New location prediction performance metrics are developed and signicant performance improvements are demonstrated with the novel extension of Hidden Markov Models to higher-order Markov movement models. With the simple probabilistic classifiers, location is correctly predicted 80% of the time. This increases to 86% with the application of the Hidden Markov Models and 88% when high-order Hidden Markov Models are employed. Further novelty is exhibited in the derivation of a real-time Hidden Markov Model Viterbi decoding algorithm which presents all the advantages of the original algorithm, while producing location estimates in real-time. Significant contributions are also made to the field of human gait-recognition by applying Bayesian filtering to the task of motion detection from accelerometers which are already present in many mobile phones. Bayesian filtering is demonstrated to enable a 35% improvement in motion recognition rate and even enables a floor recognition rate of 68% using only accelerometers. The unique application of time-varying Hidden Markov Models demonstrates the effect of integrating these freely available motion predictions on long-term location predictions
    • …
    corecore