4,627 research outputs found

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Thesaurus-assisted search term selection and query expansion: a review of user-centred studies

    Get PDF
    This paper provides a review of the literature related to the application of domain-specific thesauri in the search and retrieval process. Focusing on studies which adopt a user-centred approach, the review presents a survey of the methodologies and results from empirical studies undertaken on the use of thesauri as sources of term selection for query formulation and expansion during the search process. It summaries the ways in which domain-specific thesauri from different disciplines have been used by various types of users and how these tools aid users in the selection of search terms. The review consists of two main sections covering, firstly studies on thesaurus-aided search term selection and secondly those dealing with query expansion using thesauri. Both sections are illustrated with case studies that have adopted a user-centred approach

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach

    On the probabilistic logical modelling of quantum and geometrically-inspired IR

    Get PDF
    Information Retrieval approaches can mostly be classed into probabilistic, geometric or logic-based. Recently, a new unifying framework for IR has emerged that integrates a probabilistic description within a geometric framework, namely vectors in Hilbert spaces. The geometric model leads naturally to a predicate logic over linear subspaces, also known as quantum logic. In this paper we show the relation between this model and classic concepts such as the Generalised Vector Space Model, highlighting similarities and differences. We also show how some fundamental components of quantum-based IR can be modelled in a descriptive way using a well-established tool, i.e. Probabilistic Datalog

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts
    • …
    corecore