1,764 research outputs found

    Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings

    Get PDF
    The use of Acoustic Emission (AE) to monitor the condition of roller bearings in rotating machinery is growing in popularity. This investigation is centred on the application of Spectral Kurtosis (SK) as a denoising tool able to enhance the bearing fault features from an AE signal. This methodology was applied to AE signals acquired from an experimental investigation where different size defects were seeded on a roller bearing. The results suggest that the signal to noise ratio can be significantly improved using SK

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ϵ\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations.

    No full text
    International audienceIn this work, an effort is made to characterize seven bearing states depending on the energy entropy of Intrinsic Mode Functions (IMFs) resulted from the Empirical Modes Decomposition (EMD).Three run-to-failure bearing vibration signals representing different defects either degraded or different failing components (roller, inner race and outer race) with healthy state lead to seven bearing states under study. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used for feature reduction. Then, six classification scenarios are processed via a Probabilistic Neural Network (PNN) and a Simplified Fuzzy Adaptive resonance theory Map (SFAM) neural network. In other words, the three extracted feature data bases (EMD, PCA and LDA features) are processed firstly with SFAM and secondly with a combination of PNN-SFAM. The computation of classification accuracy and scattering criterion for each scenario shows that the EMD-LDA-PNN-SFAM combination is the suitable strategy for online bearing fault diagnosis. The proposed methodology reveals better generalization capability compared to previous works and it’s validated by an online bearing fault diagnosis. The proposed strategy can be applied for the decision making of several assets

    Classification of EMI discharge sources using time–frequency features and multi-class support vector machine

    Get PDF
    This paper introduces the first application of feature extraction and machine learning to Electromagnetic Interference (EMI) signals for discharge sources classification in high voltage power generating plants. This work presents an investigation on signals that represent different discharge sources, which are measured using EMI techniques from operating electrical machines within power plant. The analysis involves Time-Frequency image calculation of EMI signals using General Linear Chirplet Analysis (GLCT) which reveals both time and frequency varying characteristics. Histograms of uniform Local Binary Patterns (LBP) are implemented as a feature reduction and extraction technique for the classification of discharge sources using Multi-Class Support Vector Machine (MCSVM). The novelty that this paper introduces is the combination of GLCT and LBP applications to develop a new feature extraction algorithm applied to EMI signals classification. The proposed algorithm is demonstrated to be successful with excellent classification accuracy being achieved. For the first time, this work transfers expert's knowledge on EMI faults to an intelligent system which could potentially be exploited to develop an automatic condition monitoring system

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio
    • …
    corecore