2,363 research outputs found

    Summary-based inference of quantitative bounds of live heap objects

    Get PDF
    This article presents a symbolic static analysis for computing parametric upper bounds of the number of simultaneously live objects of sequential Java-like programs. Inferring the peak amount of irreclaimable objects is the cornerstone for analyzing potential heap-memory consumption of stand-alone applications or libraries. The analysis builds method-level summaries quantifying the peak number of live objects and the number of escaping objects. Summaries are built by resorting to summaries of their callees. The usability, scalability and precision of the technique is validated by successfully predicting the object heap usage of a medium-size, real-life application which is significantly larger than other previously reported case-studies.Fil: Braberman, Victor Adrian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garbervetsky, Diego David. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hym, Samuel. Universite Lille 3; FranciaFil: Yovine, Sergio Fabian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Tight polynomial worst-case bounds for loop programs

    Get PDF
    In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple programming language - representing non-deterministic imperative programs with bounded loops, and arithmetics limited to addition and multiplication - it is possible to decide precisely whether a program has certain growth-rate properties, in particular whether a computed value, or the program's running time, has a polynomial growth rate. A natural and intriguing problem was to move from answering the decision problem to giving a quantitative result, namely, a tight polynomial upper bound. This paper shows how to obtain asymptotically-tight, multivariate, disjunctive polynomial bounds for this class of programs. This is a complete solution: whenever a polynomial bound exists it will be found. A pleasant surprise is that the algorithm is quite simple; but it relies on some subtle reasoning. An important ingredient in the proof is the forest factorization theorem, a strong structural result on homomorphisms into a finite monoid

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Lecture notes on topological recursion and geometry

    Full text link
    These are lecture notes for a 4h mini-course held in Toulouse, May 9-12th, at the thematic school on "Quantum topology and geometry". The goal of these lectures is to (a) explain some incarnations, in the last ten years, of the idea of topological recursion: in two dimensional quantum field theories, in cohomological field theories, in the computation of Weil-Petersson volumes of the moduli space of curves; (b) relate them more specifically to Eynard-Orantin topological recursion (revisited from Kontsevich-Soibelman point of view based on quantum Airy structures).Comment: 48 pages, 16 figure
    corecore