21,723 research outputs found

    Inferring clonal evolution of tumors from single nucleotide somatic mutations

    Get PDF
    High-throughput sequencing allows the detection and quantification of frequencies of somatic single nucleotide variants (SNV) in heterogeneous tumor cell populations. In some cases, the evolutionary history and population frequency of the subclonal lineages of tumor cells present in the sample can be reconstructed from these SNV frequency measurements. However, automated methods to do this reconstruction are not available and the conditions under which reconstruction is possible have not been described. We describe the conditions under which the evolutionary history can be uniquely reconstructed from SNV frequencies from single or multiple samples from the tumor population and we introduce a new statistical model, PhyloSub, that infers the phylogeny and genotype of the major subclonal lineages represented in the population of cancer cells. It uses a Bayesian nonparametric prior over trees that groups SNVs into major subclonal lineages and automatically estimates the number of lineages and their ancestry. We sample from the joint posterior distribution over trees to identify evolutionary histories and cell population frequencies that have the highest probability of generating the observed SNV frequency data. When multiple phylogenies are consistent with a given set of SNV frequencies, PhyloSub represents the uncertainty in the tumor phylogeny using a partial order plot. Experiments on a simulated dataset and two real datasets comprising tumor samples from acute myeloid leukemia and chronic lymphocytic leukemia patients demonstrate that PhyloSub can infer both linear (or chain) and branching lineages and its inferences are in good agreement with ground truth, where it is available

    DeCiFering the elusive cancer cell fraction in tumor heterogeneity and evolution

    Get PDF
    The cancer cell fraction (CCF), or proportion of cancerous cells in a tumor containing a single-nucleotide variant (SNV), is a fundamental statistic used to quantify tumor heterogeneity and evolution. Existing CCF estimation methods from bulk DNA sequencing data assume that every cell with an SNV contains the same number of copies of the SNV. This assumption is unrealistic in tumors with copy-number aberrations that alter SNV multiplicities. Furthermore, the CCF does not account for SNV losses due to copy-number aberrations, confounding downstream phylogenetic analyses. We introduce DeCiFer, an algorithm that overcomes these limitations by clustering SNVs using a novel statistic, the descendant cell fraction (DCF). The DCF quantifies both the prevalence of an SNV at the present time and its past evolutionary history using an evolutionary model that allows mutation losses. We show that DeCiFer yields more parsimonious reconstructions of tumor evolution than previously reported for 49 prostate cancer samples

    Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

    Full text link
    Background. A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. Results. We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. Conclusions. We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses

    INVESTIGATING INVASION IN DUCTAL CARCINOMA IN SITU WITH TOPOGRAPHICAL SINGLE CELL GENOME SEQUENCING

    Get PDF
    Synchronous Ductal Carcinoma in situ (DCIS-IDC) is an early stage breast cancer invasion in which it is possible to delineate genomic evolution during invasion because of the presence of both in situ and invasive regions within the same sample. While laser capture microdissection studies of DCIS-IDC examined the relationship between the paired in situ (DCIS) and invasive (IDC) regions, these studies were either confounded by bulk tissue or limited to a small set of genes or markers. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS), which combines laser-catapulting with single cell DNA sequencing to measure genomic copy number profiles from single tumor cells while preserving their spatial context. We applied TSCS to sequence 1,293 single cells from 10 synchronous DCIS patients. We also applied deep-exome sequencing to the in situ, invasive and normal tissues for the DCIS-IDC patients. Previous bulk tissue studies had produced several conflicting models of tumor evolution. Our data support a multiclonal invasion model, in which genome evolution occurs within the ducts and gives rise to multiple subclones that escape the ducts into the adjacent tissues to establish the invasive carcinomas. In summary, we have developed a novel method for single cell DNA sequencing, which preserves spatial context, and applied this method to understand clonal evolution during the transition between carcinoma in situ to invasive ductal carcinoma
    • …
    corecore