651 research outputs found

    Robust Modeling of Epistemic Mental States

    Full text link
    This work identifies and advances some research challenges in the analysis of facial features and their temporal dynamics with epistemic mental states in dyadic conversations. Epistemic states are: Agreement, Concentration, Thoughtful, Certain, and Interest. In this paper, we perform a number of statistical analyses and simulations to identify the relationship between facial features and epistemic states. Non-linear relations are found to be more prevalent, while temporal features derived from original facial features have demonstrated a strong correlation with intensity changes. Then, we propose a novel prediction framework that takes facial features and their nonlinear relation scores as input and predict different epistemic states in videos. The prediction of epistemic states is boosted when the classification of emotion changing regions such as rising, falling, or steady-state are incorporated with the temporal features. The proposed predictive models can predict the epistemic states with significantly improved accuracy: correlation coefficient (CoERR) for Agreement is 0.827, for Concentration 0.901, for Thoughtful 0.794, for Certain 0.854, and for Interest 0.913.Comment: Accepted for Publication in Multimedia Tools and Application, Special Issue: Socio-Affective Technologie

    Spotting Agreement and Disagreement: A Survey of Nonverbal Audiovisual Cues and Tools

    Get PDF
    While detecting and interpreting temporal patterns of non–verbal behavioral cues in a given context is a natural and often unconscious process for humans, it remains a rather difficult task for computer systems. Nevertheless, it is an important one to achieve if the goal is to realise a naturalistic communication between humans and machines. Machines that are able to sense social attitudes like agreement and disagreement and respond to them in a meaningful way are likely to be welcomed by users due to the more natural, efficient and human–centered interaction they are bound to experience. This paper surveys the nonverbal cues that could be present during agreement and disagreement behavioural displays and lists a number of tools that could be useful in detecting them, as well as a few publicly available databases that could be used to train these tools for analysis of spontaneous, audiovisual instances of agreement and disagreement

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Measuring, analysing and artificially generating head nodding signals in dyadic social interaction

    Get PDF
    Social interaction involves rich and complex behaviours where verbal and non-verbal signals are exchanged in dynamic patterns. The aim of this thesis is to explore new ways of measuring and analysing interpersonal coordination as it naturally occurs in social interactions. Specifically, we want to understand what different types of head nods mean in different social contexts, how they are used during face-to-face dyadic conversation, and if they relate to memory and learning. Many current methods are limited by time-consuming and low-resolution data, which cannot capture the full richness of a dyadic social interaction. This thesis explores ways to demonstrate how high-resolution data in this area can give new insights into the study of social interaction. Furthermore, we also want to demonstrate the benefit of using virtual reality to artificially generate interpersonal coordination to test our hypotheses about the meaning of head nodding as a communicative signal. The first study aims to capture two patterns of head nodding signals – fast nods and slow nods – and determine what they mean and how they are used across different conversational contexts. We find that fast nodding signals receiving new information and has a different meaning than slow nods. The second study aims to investigate a link between memory and head nodding behaviour. This exploratory study provided initial hints that there might be a relationship, though further analyses were less clear. In the third study, we aim to test if interactive head nodding in virtual agents can be used to measure how much we like the virtual agent, and whether we learn better from virtual agents that we like. We find no causal link between memory performance and interactivity. In the fourth study, we perform a cross-experimental analysis of how the level of interactivity in different contexts (i.e., real, virtual, and video), impacts on memory and find clear differences between them

    Proceedings

    Get PDF
    Proceedings of the 3rd Nordic Symposium on Multimodal Communication. Editors: Patrizia Paggio, Elisabeth Ahlsén, Jens Allwood, Kristiina Jokinen, Costanza Navarretta. NEALT Proceedings Series, Vol. 15 (2011), vi+87 pp. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/22532

    Speakers Raise their Hands and Head during Self-Repairs in Dyadic Conversations

    Get PDF
    People often encounter difficulties in building shared understanding during everyday conversation. The most common symptom of these difficulties are self-repairs, when a speaker restarts, edits or amends their utterances mid-turn. Previous work has focused on the verbal signals of self-repair, i.e. speech disfluences (filled pauses, truncated words and phrases, word substitutions or reformulations), and computational tools now exist that can automatically detect these verbal phenomena. However, face-to-face conversation also exploits rich non-verbal resources and previous research suggests that self-repairs are associated with distinct hand movement patterns. This paper extends those results by exploring head and hand movements of both speakers and listeners using two motion parameters: height (vertical position) and 3D velocity. The results show that speech sequences containing self-repairs are distinguishable from fluent ones: speakers raise their hands and head more (and move more rapidly) during self-repairs. We obtain these results by analysing data from a corpus of 13 unscripted dialogues, and we discuss how these findings could support the creation of improved cognitive artificial systems for natural human-machine and human-robot interaction

    Automatic Measurement of Affect in Dimensional and Continuous Spaces: Why, What, and How?

    Get PDF
    This paper aims to give a brief overview of the current state-of-the-art in automatic measurement of affect signals in dimensional and continuous spaces (a continuous scale from -1 to +1) by seeking answers to the following questions: i) why has the field shifted towards dimensional and continuous interpretations of affective displays recorded in real-world settings? ii) what are the affect dimensions used, and the affect signals measured? and iii) how has the current automatic measurement technology been developed, and how can we advance the field

    Nonverbal Social Sensing: What Social Sensing Can and Cannot Do for the Study of Nonverbal Behavior From Video

    Get PDF
    The study of nonverbal behavior (NVB), and in particular kinesics (i.e., face and body motions), is typically seen as cost-intensive. However, the development of new technologies (e.g., ubiquitous sensing, computer vision, and algorithms) and approaches to study social behavior [i.e., social signal processing (SSP)] makes it possible to train algorithms to automatically code NVB, from action/motion units to inferences. Nonverbal social sensing refers to the use of these technologies and approaches for the study of kinesics based on video recordings. Nonverbal social sensing appears as an inspiring and encouraging approach to study NVB at reduced costs, making it a more attractive research field. However, does this promise hold? After presenting what nonverbal social sensing is and can do, we discussed the key challenges that researchers face when using nonverbal social sensing on video data. Although nonverbal social sensing is a promising tool, researchers need to be aware of the fact that algorithms might be as biased as humans when extracting NVB or that the automated NVB coding might remain context-dependent. We provided study examples to discuss these challenges and point to potential solutions

    Stressful first impressions in job interviews

    Get PDF
    Stress can impact many aspects of our lives, such as the way we interact and work with others, or the first impressions that we make. In the past, stress has been most commonly assessed through self-reported questionnaires; however, advancements in wearable technology have enabled the measurement of physiological symptoms of stress in an unobtrusive manner. Using a dataset of job interviews, we investigate whether first impressions of stress (from annotations) are equivalent to physiological measurements of the electrodermal activity (EDA). We examine the use of automatically extracted nonverbal cues stemming from both the visual and audio modalities, as well EDA stress measurements for the inference of stress impressions obtained from manual annotations. Stress impressions were found to be significantly negatively correlated with hireability ratings i.e individuals who were perceived to be more stressed were more likely to obtained lower hireability scores. The analysis revealed a significant relationship between audio and visual features but low predictability and no significant effects were found for the EDA features. While some nonverbal cues were more clearly related to stress, the physiological cues were less reliable and warrant further investigation into the use of wearable sensors for stress detection
    corecore