47,231 research outputs found

    Partial differential equations for self-organization in cellular and developmental biology

    Get PDF
    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field

    Corporation robots

    Get PDF
    Nowadays, various robots are built to perform multiple tasks. Multiple robots working together to perform a single task becomes important. One of the key elements for multiple robots to work together is the robot need to able to follow another robot. This project is mainly concerned on the design and construction of the robots that can follow line. In this project, focuses on building line following robots leader and slave. Both of these robots will follow the line and carry load. A Single robot has a limitation on handle load capacity such as cannot handle heavy load and cannot handle long size load. To overcome this limitation an easier way is to have a groups of mobile robots working together to accomplish an aim that no single robot can do alon

    3 case studies: a hybrid educational strategy for ART/SCI collaborations

    Get PDF
    In this paper we report on a transdisciplinary university course designed to bring together fine art/visual communication design and computer science students for the creation and implementation of collaborative visual/audio projects that draw upon the specialized knowledge of both these disciplines. While an overview of the syllabus and the teaching methodologies is undertaken in the introduction, the focus of the paper concentrates upon an in-depth discussion and analysis of 3 specific projects that were developed by 3 distinct teams of students comprised of one artist/designer and one engineer each

    Key issues on partial least squares (PLS) in operations management research: A guide to submissions

    Get PDF
    Purpose: This work aims to systematise the use of PLS as an analysis tool via a usage guide or recommendation for researchers to help them eliminate errors when using this tool. Design/methodology/approach: A recent literature review about PLS and discussion with experts in the methodology. Findings: This article considers the current situation of PLS after intense academic debate in recent years, and summarises recommendations to properly conduct and report a research work that uses this methodology in its analyses. We particularly focus on how to: choose the construct type; choose the estimation technique (PLS or CB-SEM); evaluate and report the measurement model; evaluate and report the structural model; analyse statistical power. Research limitations: It was impossible to cover some relevant aspects in considerable detail herein: presenting a guided example that respects all the report recommendations presented herein to act as a practical guide for authors; does the specification or evaluation of the measurement model differ when it deals with first-order or second-order constructs?; how are the outcomes of the constructs interpreted with the indicators being measured with nominal measurement levels?; is the Confirmatory Composite Analysis approach compatible with recent proposals about the Confirmatory Tetrad Analysis (CTA)? These themes will the object of later publications. Originality/value: We provide a check list of the information elements that must contain any article using PLS. Our intention is for the article to act as a guide for the researchers and possible authors who send works to the JIEM (Journal of Industrial and Engineering Management). This guide could be used by both editors and reviewers of JIEM, or other journals in this area, to evaluate and reduce the risk of bias (Losilla, Oliveras, Marin-Garcia & Vives, 2018) in works using PLS as an analysis procedure

    An artificial immune systems based predictive modelling approach for the multi-objective elicitation of Mamdani fuzzy rules: a special application to modelling alloys

    Get PDF
    In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani Fuzzy Rule-Based Systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability

    3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?

    Get PDF
    The typical multiwavelength aerosol lidar data set for inversion of optical to microphysical parameters is composed of three backscatter coefficients (β) at 355, 532, and 1064 nm and two extinction coefficients (α) at 355 and 532 nm. This data combination is referred to as a 3β+2α or 3+2 data set. This set of data is sufficient for retrieving some important microphysical particle parameters if the particles have spherical shape. Here, we investigate the effect of including the particle linear depolarization ratio (δ) as a third input parameter for the inversion of lidar data. The inversion algorithm is generally not used if measurements show values of δ that exceed 0.10 at 532 nm, i.e. in the presence of non-spherical particles such as desert dust, volcanic ash, and, under special circumstances, biomass-burning smoke. We use experimental data collected with instruments that are capable of measuring δ at all three lidar wavelengths with an inversion routine that applies the spheroidal light-scattering model of Dubovik et al. (2006) with a fixed axis-ratio distribution to replicate scattering properties of non-spherical particles. The inversion gives the fraction of spheroids required to replicate the optical data as an additional output parameter. This is the first systematic test of the effect of using all theoretically possible combinations of δ taken at 355, 532, and 1064 nm as input in the lidar data inversion. We find that depolarization information of at least one wavelength already provides useful information for the inversion of optical data that have been collected in the presence of non-spherical mineral dust particles. However, any choice of δλ will give lower values of the single-scattering albedo than the traditional 3+2 data set. We find that input data sets that include δ355 give a spheroid fraction that closely resembles the dust ratio we obtain from using β532 and δ532 in a methodology applied in aerosol-type separation. The use of δ355 in data sets of two or three δλ reduces the spheroid fraction that is retrieved when using δ532 and δ1064. Use of the latter two parameters without accounting for δ355 generally leads to high spheroid fractions that we consider not trustworthy. The use of three δλ instead of two δλ, including the constraint that one of these is measured at 355 nm does not provide any advantage over using 3+2+δ355 for the observations with varying contributions of mineral dust considered here. However, additional measurements at wavelengths different from 355 nm would be desirable for application to a wider range of aerosol scenarios that may include non-spherical smoke particles, which can have values of δ355 that are indistinguishable from those found for mineral dust. We therefore conclude that – depending on measurement capability – the future standard input for inversion of lidar data taken in the presence of mineral dust particles and using the spheroid model of Dubovik et al. (2006) might be 3+2+δ355 or 3+2+δ355+δ532.Peer reviewe

    Turing Patterns and Biological Explanation

    Get PDF
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can be compared with experimental data, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific explanation

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)
    • …
    corecore