32,408 research outputs found

    Using Process Mining to Learn from Process Changes in Evolutionary Systems

    Get PDF
    Traditional information systems struggle with the requirement to provide flexibility and process support while still enforcing some degree of control. Accordingly, adaptive process management systems (PMSs) have emerged that provide some flexibility by enabling dynamic process changes during runtime. Based on the assumption that these process changes are recorded explicitly, we present two techniques for mining change logs in adaptive PMSs; i.e., we do not only analyze the execution logs of the operational processes, but also consider the adaptations made at the process instance level. The change processes discovered through process mining provide an aggregated overview of all changes that happened so far. Using process mining as an analysis tool we show in this paper how better support can be provided for truly flexible processes by understanding when and why process changes become necessary

    Using process mining to learn from process changes in evolutionary systems

    Get PDF
    Abstract. Traditional information systems struggle with the requirement to provide flexibility and process support while still enforcing some degree of control. Accordingly, adaptive process management systems (PMSs) have emerged that provide some flexibility by enabling dynamic process changes during runtime. Based on the assumption that these process changes are recorded explicitly, we present two techniques for mining change logs in adaptive PMSs; i.e., we do not only analyze the execution logs of the operational processes, but also consider the adaptations made at the process instance level. The change processes discovered through process mining provide an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for integrating the extrinsic drivers of process change (i.e., the stimuli for flexibility) with existing process adaptation approaches (i.e., the intrinsic change mechanisms). Using process mining as an analysis tool we show in this paper how better support can be provided for truly flexible processes by understanding when and why process changes become necessary

    Artificial Intelligence and Data Science in the Automotive Industry

    Full text link
    Data science and machine learning are the key technologies when it comes to the processes and products with automatic learning and optimization to be used in the automotive industry of the future. This article defines the terms "data science" (also referred to as "data analytics") and "machine learning" and how they are related. In addition, it defines the term "optimizing analytics" and illustrates the role of automatic optimization as a key technology in combination with data analytics. It also uses examples to explain the way that these technologies are currently being used in the automotive industry on the basis of the major subprocesses in the automotive value chain (development, procurement; logistics, production, marketing, sales and after-sales, connected customer). Since the industry is just starting to explore the broad range of potential uses for these technologies, visionary application examples are used to illustrate the revolutionary possibilities that they offer. Finally, the article demonstrates how these technologies can make the automotive industry more efficient and enhance its customer focus throughout all its operations and activities, extending from the product and its development process to the customers and their connection to the product.Comment: 22 pages, 4 figure

    A Multi-Disciplinary Review of Knowledge Acquisition Methods: From Human to Autonomous Eliciting Agents

    Full text link
    This paper offers a multi-disciplinary review of knowledge acquisition methods in human activity systems. The review captures the degree of involvement of various types of agencies in the knowledge acquisition process, and proposes a classification with three categories of methods: the human agent, the human-inspired agent, and the autonomous machine agent methods. In the first two categories, the acquisition of knowledge is seen as a cognitive task analysis exercise, while in the third category knowledge acquisition is treated as an autonomous knowledge-discovery endeavour. The motivation for this classification stems from the continuous change over time of the structure, meaning and purpose of human activity systems, which are seen as the factor that fuelled researchers' and practitioners' efforts in knowledge acquisition for more than a century. We show through this review that the KA field is increasingly active due to the higher and higher pace of change in human activity, and conclude by discussing the emergence of a fourth category of knowledge acquisition methods, which are based on red-teaming and co-evolution

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Evaluating and Characterizing Incremental Learning from Non-Stationary Data

    Full text link
    Incremental learning from non-stationary data poses special challenges to the field of machine learning. Although new algorithms have been developed for this, assessment of results and comparison of behaviors are still open problems, mainly because evaluation metrics, adapted from more traditional tasks, can be ineffective in this context. Overall, there is a lack of common testing practices. This paper thus presents a testbed for incremental non-stationary learning algorithms, based on specially designed synthetic datasets. Also, test results are reported for some well-known algorithms to show that the proposed methodology is effective at characterizing their strengths and weaknesses. It is expected that this methodology will provide a common basis for evaluating future contributions in the field

    Modeling Life as Cognitive Info-Computation

    Full text link
    This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201

    Artificial Immune Systems (INTROS 2)

    Full text link
    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self or non-self substances. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune system have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.Comment: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2nd edition, Springer, Chapter 7, 2014. arXiv admin note: substantial text overlap with arXiv:0803.3912, arXiv:0910.4899, arXiv:0801.431

    Inducing Generalized Multi-Label Rules with Learning Classifier Systems

    Full text link
    In recent years, multi-label classification has attracted a significant body of research, motivated by real-life applications, such as text classification and medical diagnoses. Although sparsely studied in this context, Learning Classifier Systems are naturally well-suited to multi-label classification problems, whose search space typically involves multiple highly specific niches. This is the motivation behind our current work that introduces a generalized multi-label rule format -- allowing for flexible label-dependency modeling, with no need for explicit knowledge of which correlations to search for -- and uses it as a guide for further adapting the general Michigan-style supervised Learning Classifier System framework. The integration of the aforementioned rule format and framework adaptations results in a novel algorithm for multi-label classification whose behavior is studied through a set of properly defined artificial problems. The proposed algorithm is also thoroughly evaluated on a set of multi-label datasets and found competitive to other state-of-the-art multi-label classification methods
    • …
    corecore