8,312 research outputs found

    Adaptive sampling in context-aware systems: a machine learning approach

    No full text
    As computing systems become ever more pervasive, there is an increasing need for them to understand and adapt to the state of the environment around them: that is, their context. This understanding comes with considerable reliance on a range of sensors. However, portable devices are also very constrained in terms of power, and hence the amount of sensing must be minimised. In this paper, we present a machine learning architecture for context awareness which is designed to balance the sampling rates (and hence energy consumption) of individual sensors with the significance of the input from that sensor. This significance is based on predictions of the likely next context. The architecture is implemented using a selected range of user contexts from a collected data set. Simulation results show reliable context identification results. The proposed architecture is shown to significantly reduce the energy requirements of the sensors with minimal loss of accuracy in context identification

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    No soldiers left behind: An IoT-based low-power military mobile health system design

    Get PDF
    © 2013 IEEE. There has been an increasing prevalence of ad-hoc networks for various purposes and applications. These include Low Power Wide Area Networks (LPWAN) and Wireless Body Area Networks (WBAN) which have emerging applications in health monitoring as well as user location tracking in emergency settings. Further applications can include real-Time actuation of IoT equipment, and activation of emergency alarms through the inference of a user\u27s situation using sensors and personal devices through a LPWAN. This has potential benefits for military networks and applications regarding the health of soldiers and field personnel during a mission. Due to the wireless nature of ad-hoc network devices, it is crucial to conserve battery power for sensors and equipment which transmit data to a central server. An inference system can be applied to devices to reduce data size for transfer and subsequently reduce battery consumption, however this could result in compromising accuracy. This paper presents a framework for secure automated messaging and data fusion as a solution to address the challenges of requiring data size reduction whilst maintaining a satisfactory accuracy rate. A Multilayer Inference System (MIS) was used to conserve the battery power of devices such as wearables and sensor devices. The results for this system showed a data reduction of 97.9% whilst maintaining satisfactory accuracy against existing single layer inference methods. Authentication accuracy can be further enhanced with additional biometrics and health data information

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Intelligent Coordination and Automation for Smart Home Accessories

    Get PDF
    Smarthome accessories are rapidly becoming more popular. Although many companies are making devices to take advantage of this market, most of the created smart devices are actually unintelligent. Currently, these smart home devices require meticulous, tedious configuration to get any sort of enhanced usability over their analog counterparts. We propose building a general model using machine learning and data science to automatically learn a user\u27s smart accessory usage to predict their configuration. We have identified the requirements, collected data, recognized the risks, implemented the system, and have met the goals we set out to accomplish

    Designing a Context-Sensitive Context Detection Service for Mobile Devices

    Get PDF
    This paper describes the design, implementation, and evaluation of Amoeba, a context-sensitive context detection service for mobile devices. Amoeba exports an API that allows a client to express interest in one or more context types (activity, indoor/outdoor, and entry/exit to/from named regions), subscribe to specific modes within each context (e.g., "walking" or "running", but no other activity), and specify a response latency (i.e., how often the client is notified). Each context has a detector that returns its estimate of the mode. The detectors take both the desired subscriptions and the current context detection into account, adjusting both the types of sensors and the sampling rates to achieve high accuracy and low energy consumption. We have implemented Amoeba on Android. Experiments with Amoeba on 45+ hours of data show that our activity detector achieves an accuracy between 92% and 99%, outperforming previous proposals like UCLA* (59%), EEMSS (82%) and SociableSense (72%), while consuming 4 to 6× less energy
    • 

    corecore