7,936 research outputs found

    Efficient computation of high index Sturm-Liouville eigenvalues for problems in physics

    Full text link
    Finding the eigenvalues of a Sturm-Liouville problem can be a computationally challenging task, especially when a large set of eigenvalues is computed, or just when particularly large eigenvalues are sought. This is a consequence of the highly oscillatory behaviour of the solutions corresponding to high eigenvalues, which forces a naive integrator to take increasingly smaller steps. We will discuss some techniques that yield uniform approximation over the whole eigenvalue spectrum and can take large steps even for high eigenvalues. In particular, we will focus on methods based on coefficient approximation which replace the coefficient functions of the Sturm-Liouville problem by simpler approximations and then solve the approximating problem. The use of (modified) Magnus or Neumann integrators allows to extend the coefficient approximation idea to higher order methods

    Boundary integral methods in high frequency scattering

    Get PDF
    In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources

    Analysis of parametric biological models with non-linear dynamics

    Full text link
    In this paper we present recent results on parametric analysis of biological models. The underlying method is based on the algorithms for computing trajectory sets of hybrid systems with polynomial dynamics. The method is then applied to two case studies of biological systems: one is a cardiac cell model for studying the conditions for cardiac abnormalities, and the second is a model of insect nest-site choice.Comment: In Proceedings HSB 2012, arXiv:1208.315

    A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method

    Get PDF
    The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise-linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations - radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations - for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise-linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations.Comment: 33 pages, 17 figures, Accepted (in press) by APNU
    • …
    corecore