1,062 research outputs found

    Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations

    Full text link
    This paper is concerned with the discretization error analysis of semilinear Neumann boundary control problems in polygonal domains with pointwise inequality constraints on the control. The approximations of the control are piecewise constant functions. The state and adjoint state are discretized by piecewise linear finite elements. In a postprocessing step approximations of locally optimal controls of the continuous optimal control problem are constructed by the projection of the respective discrete adjoint state. Although the quality of the approximations is in general affected by corner singularities a convergence order of h2lnh3/2h^2|\ln h|^{3/2} is proven for domains with interior angles smaller than 2π/32\pi/3 using quasi-uniform meshes. For larger interior angles mesh grading techniques are used to get the same order of convergence

    An hphp-Adaptive Newton-Galerkin Finite Element Procedure for Semilinear Boundary Value Problems

    Full text link
    In this paper we develop an hphp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hphp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hphp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.Comment: arXiv admin note: text overlap with arXiv:1408.522
    corecore