25,101 research outputs found

    Evolving database systems : a persistent view

    Get PDF
    Submitted to POS7 This work was supported in St Andrews by EPSRC Grant GR/J67611 "Delivering the Benefits of Persistence"Orthogonal persistence ensures that information will exist for as long as it is useful, for which it must have the ability to evolve with the growing needs of the application systems that use it. This may involve evolution of the data, meta-data, programs and applications, as well as the users' perception of what the information models. The need for evolution has been well recognised in the traditional (data processing) database community and the cost of failing to evolve can be gauged by the resources being invested in interfacing with legacy systems. Zdonik has identified new classes of application, such as scientific, financial and hypermedia, that require new approaches to evolution. These applications are characterised by their need to store large amounts of data whose structure must evolve as it is discovered by the applications that use it. This requires that the data be mapped dynamically to an evolving schema. Here, we discuss the problems of evolution in these new classes of application within an orthogonally persistent environment and outline some approaches to these problems.Postprin

    Transparent Persistence with Java Data Objects

    Full text link
    Flexible and performant Persistency Service is a necessary component of any HEP Software Framework. The building of a modular, non-intrusive and performant persistency component have been shown to be very difficult task. In the past, it was very often necessary to sacrifice modularity to achieve acceptable performance. This resulted in the strong dependency of the overall Frameworks on their Persistency subsystems. Recent development in software technology has made possible to build a Persistency Service which can be transparently used from other Frameworks. Such Service doesn't force a strong architectural constraints on the overall Framework Architecture, while satisfying high performance requirements. Java Data Object standard (JDO) has been already implemented for almost all major databases. It provides truly transparent persistency for any Java object (both internal and external). Objects in other languages can be handled via transparent proxies. Being only a thin layer on top of a used database, JDO doesn't introduce any significant performance degradation. Also Aspect-Oriented Programming (AOP) makes possible to treat persistency as an orthogonal Aspect of the Application Framework, without polluting it with persistence-specific concepts. All these techniques have been developed primarily (or only) for the Java environment. It is, however, possible to interface them transparently to Frameworks built in other languages, like for example C++. Fully functional prototypes of flexible and non-intrusive persistency modules have been build for several other packages, as for example FreeHEP AIDA and LCG Pool AttributeSet (package Indicium).Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. PSN TUKT00

    A Model-Based Approach for the Management of Electronic Invoices

    Get PDF
    The globalized market pushes companies to expand their business boundaries to a whole new level. In order to efficiently support this environment, business transactions must be executed over the Internet. However, there are several factors complicating this process, such as the current state of electronic invoices. Electronic invoice adoption is not widespread because of the current format fragmentation originated by national regulations. In this paper we present an approach based on Model-Driven Engineering techniques and abstractions for supporting the core functions of invoice management systems. We compare our solution with the traditional implementations and try to analyze the advantages MDE can bring to this specific domain

    Web based system architecture for long pulse remote experimentation

    Get PDF
    Remote experimentation (RE) methods will be essential in next generation fusion devices. Requirements for long pulse RE will be: on-line data visualization, on-line data acquisition processes monitoring and on-line data acquisition systems interactions (start, stop or set-up modifications). Note that these methods are not oriented to real-time control of fusion plant devices. INDRA Sistemas S.A., CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) and UPM (Universidad Politécnica de Madrid) have designed a specific software architecture for these purposes. The architecture can be supported on the BeansNet platform, whose integration with an application server provides an adequate solution to the requirements. BeansNet is a JINI based framework developed by INDRA, which makes easy the implementation of a remote experimentation model based on a Service Oriented Architecture. The new software architecture has been designed on the basis of the experience acquired in the development of an upgrade of the TJ-II remote experimentation system

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur

    Context Aware Adaptable Applications - A global approach

    Get PDF
    Actual applications (mostly component based) requirements cannot be expressed without a ubiquitous and mobile part for end-users as well as for M2M applications (Machine to Machine). Such an evolution implies context management in order to evaluate the consequences of the mobility and corresponding mechanisms to adapt or to be adapted to the new environment. Applications are then qualified as context aware applications. This first part of this paper presents an overview of context and its management by application adaptation. This part starts by a definition and proposes a model for the context. It also presents various techniques to adapt applications to the context: from self-adaptation to supervised approached. The second part is an overview of architectures for adaptable applications. It focuses on platforms based solutions and shows information flows between application, platform and context. Finally it makes a synthesis proposition with a platform for adaptable context-aware applications called Kalimucho. Then we present implementations tools for software components and a dataflow models in order to implement the Kalimucho platform

    An artefact repository to support distributed software engineering

    Get PDF
    The Open Source Component Artefact Repository (OSCAR) system is a component of the GENESIS platform designed to non-invasively inter-operate with work-flow management systems, development tools and existing repository systems to support a distributed software engineering team working collaboratively. Every artefact possesses a collection of associated meta-data, both standard and domain-specific presented as an XML document. Within OSCAR, artefacts are made aware of changes to related artefacts using notifications, allowing them to modify their own meta-data actively in contrast to other software repositories where users must perform all and any modifications, however trivial. This recording of events, including user interactions provides a complete picture of an artefact's life from creation to (eventual) retirement with the intention of supporting collaboration both amongst the members of the software engineering team and agents acting on their behalf
    • 

    corecore