12,525 research outputs found

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Software Architecture of Code Analysis Frameworks Matters: The Frama-C Example

    Full text link
    Implementing large software, as software analyzers which aim to be used in industrial settings, requires a well-engineered software architecture in order to ease its daily development and its maintenance process during its lifecycle. If the analyzer is not only a single tool, but an open extensible collaborative framework in which external developers may develop plug-ins collaborating with each other, such a well designed architecture even becomes more important. In this experience report, we explain difficulties of developing and maintaining open extensible collaborative analysis frameworks, through the example of Frama-C, a platform dedicated to the analysis of code written in C. We also present the new upcoming software architecture of Frama-C and how it aims to solve some of these issues.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338
    • …
    corecore