935 research outputs found

    Transfer Learning for Speech Recognition on a Budget

    Full text link
    End-to-end training of automated speech recognition (ASR) systems requires massive data and compute resources. We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data. We conduct several systematic experiments adapting a Wav2Letter convolutional neural network originally trained for English ASR to the German language. We show that this technique allows faster training on consumer-grade resources while requiring less training data in order to achieve the same accuracy, thereby lowering the cost of training ASR models in other languages. Model introspection revealed that small adaptations to the network's weights were sufficient for good performance, especially for inner layers.Comment: Accepted for 2nd ACL Workshop on Representation Learning for NL

    Non-native children speech recognition through transfer learning

    Full text link
    This work deals with non-native children's speech and investigates both multi-task and transfer learning approaches to adapt a multi-language Deep Neural Network (DNN) to speakers, specifically children, learning a foreign language. The application scenario is characterized by young students learning English and German and reading sentences in these second-languages, as well as in their mother language. The paper analyzes and discusses techniques for training effective DNN-based acoustic models starting from children native speech and performing adaptation with limited non-native audio material. A multi-lingual model is adopted as baseline, where a common phonetic lexicon, defined in terms of the units of the International Phonetic Alphabet (IPA), is shared across the three languages at hand (Italian, German and English); DNN adaptation methods based on transfer learning are evaluated on significant non-native evaluation sets. Results show that the resulting non-native models allow a significant improvement with respect to a mono-lingual system adapted to speakers of the target language

    ASR error management for improving spoken language understanding

    Get PDF
    This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems. In this study, the SLU task consists in automatically extracting, from ASR transcriptions , semantic concepts and concept/values pairs in a e.g touristic information system. An approach is proposed for enriching the set of semantic labels with error specific labels and by using a recently proposed neural approach based on word embeddings to compute well calibrated ASR confidence measures. Experimental results are reported showing that it is possible to decrease significantly the Concept/Value Error Rate with a state of the art system, outperforming previously published results performance on the same experimental data. It also shown that combining an SLU approach based on conditional random fields with a neural encoder/decoder attention based architecture , it is possible to effectively identifying confidence islands and uncertain semantic output segments useful for deciding appropriate error handling actions by the dialogue manager strategy .Comment: Interspeech 2017, Aug 2017, Stockholm, Sweden. 201

    Automatic speech recognition with deep neural networks for impaired speech

    Get PDF
    The final publication is available at https://link.springer.com/chapter/10.1007%2F978-3-319-49169-1_10Automatic Speech Recognition has reached almost human performance in some controlled scenarios. However, recognition of impaired speech is a difficult task for two main reasons: data is (i) scarce and (ii) heterogeneous. In this work we train different architectures on a database of dysarthric speech. A comparison between architectures shows that, even with a small database, hybrid DNN-HMM models outperform classical GMM-HMM according to word error rate measures. A DNN is able to improve the recognition word error rate a 13% for subjects with dysarthria with respect to the best classical architecture. This improvement is higher than the one given by other deep neural networks such as CNNs, TDNNs and LSTMs. All the experiments have been done with the Kaldi toolkit for speech recognition for which we have adapted several recipes to deal with dysarthric speech and work on the TORGO database. These recipes are publicly available.Peer ReviewedPostprint (author's final draft
    • …
    corecore