1,565 research outputs found

    Biodistribution and Imaging of The 99mTc-Glutathione Radiopharmaceutical in White Rats Induced with Cancer

    Get PDF
    99mTc-glutathione (99mTc-GSH) is a radiopharmaceuticalwhich is potentially used as a cancer diagnostic kit. As with other radiopharmaceuticals, before applied in humans, including in clinical trials, 99mTc-GSH needs to go through a series of preclinical trials in animal first. The preclinical trial which has been done in this study is the evaluation of the biological test on biodistribution and imaging of white rats (Rattus norvegicus) which had been induced with cancer. The aims of this research were to obtain data on biodistribution and to image the biodistribution of 99mTc-GSH at 1 hour, 3 hours, and 24 hours post-injection. Biodistribution resultsof 99mTc-GSHin the cancer at the timesof 1 hour, 3 hours, and 24 hours after injection were 0.66% ID/g, 0.95% ID/g, and 0.06% ID/g, respectively. This result shows that the highest accumulation of 99mTc-GSH in canceroccur at 3 hours post-injection. This value indicates that the optimal accumulation of the 99mTc-GSH occur in this time interval.In addition, the results of imaging test also show that the accumulation capacity of 99mTc-GSHin cancer is also highest at 3 hours post-injection.Received:16 January 2013; Revised:15 October 2013; Accepted: 16 October 201

    Update of intra and extra oral causes of halitosis: a systematic review

    Get PDF
    Aim: To systematically review the different causes of halitosis, both intra oral and extra oral. Methods: PubMed-MEDLINE was searched to identify potential relevant studies. The keywords used to search were "halitosis", "bad-breath" and "oral malodour causes". The inclusion criteria involved articles published between 2009 and 2014, written in or translated to English which included reviews, cross-sectional studies, randomised clinical trials, non randomised trials, prospective observational studies and case-control studies. Results: From the 465 studies initially selected, when the inclusion criteria was applied and reviewed by the authors, 39 articles provided relevant information about the aetiology of halitosis. This included 11 reviews, 12 cross-sectional studies, 7 randomised and 2 non randomised trials, 2 prospective observational studies and 5 case-control studies. Conclusion: Halitosis has a complex aetiology, although majority of the studies agree that in 90% of cases, it is linked to an intra oral cause, specifically when Volatile Sulphur Compounds (VSC) are produced by bacterial decomposition. Coating of the tongue and periodontal disease are the main aetiological factors. More research has to be done to clarify the exact pathophysiological mechanism of halitosis

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der überwiegende Teil textuell kodierter Information elektronisch verfügbar. Hiermit kommt der Entwicklung leistungsfähiger Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die Nützlichkeit gängiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer Funktionalität (Flexion, Derivation und Komposition), lexikalisch-semantischer Funktionalität und der Fähigkeit zu einer sprachübergreifenden Analyse großer Dokumentenbestände. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym für Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen Einträge mittels semantischer Relationen sprachübergreifend verknüpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhängige, konzeptklassenartige Symbole ersetzt werden. Die resultierende Repräsentation ist die Basis für das sprachübergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von Lexikoneinträgen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergänzt werden. Die Berücksichtigung sprachübergreifender Phänomene führt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen Ambiguitäten. Die Leistungsfähigkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gängigen Herangehensweisen gegenübergestellt

    Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning

    Get PDF
    Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task using existing biomedical knowledge bases. Our approaches can be broadly labeled as link prediction or knowledge base completion in computer science literature. Specifically, first we investigate the predictive power of graph paths connecting entities in the publicly available biomedical knowledge base, SemMedDB (the entities and relations constitute a large knowledge graph as a whole). To that end, we build logistic regression models utilizing semantic graph pattern features extracted from the SemMedDB to predict treatment and causative relations in Unified Medical Language System (UMLS) Metathesaurus. Second, we study matrix and tensor factorization algorithms for predicting drug repositioning pairs in repoDB, a general purpose gold standard database of approved and failed drug–disease indications. The idea here is to predict repoDB pairs by approximating the given input matrix/tensor structure where the value of a cell represents the existence of a relation coming from SemMedDB and UMLS knowledge bases. The essential goal is to predict the test pairs that have a blank cell in the input matrix/tensor based on the shared biomedical context among existing non-blank cells. Our final approach involves graph convolutional neural networks where entities and relation types are embedded in a vector space involving neighborhood information. Basically, we minimize an objective function to guide our model to concept/relation embeddings such that distance scores for positive relation pairs are lower than those for the negative ones. Overall, our results demonstrate that recent link prediction methods applied to automatically curated, and hence imprecise, knowledge bases can nevertheless result in high accuracy drug candidate prediction with appropriate configuration of both the methods and datasets used

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Methods and Techniques for Clinical Text Modeling and Analytics

    Get PDF
    Nowadays, a large portion of clinical data only exists in free text. The wide adoption of Electronic Health Records (EHRs) has enabled the increases in accessing to clinical documents, which provide challenges and opportunities for clinical Natural Language Processing (NLP) researchers. Given free-text clinical notes as input, an ideal system for clinical text understanding should have the ability to support clinical decisions. At corpus level, the system should recommend similar notes based on disease or patient types, and provide medication recommendation, or any other type of recommendations, based on patients' symptoms and other similar medical cases. At document level, it should return a list of important clinical concepts. Moreover, the system should be able to make diagnostic inferences over clinical concepts and output diagnosis. Unfortunately, current work has not systematically studied this system. This study focuses on developing and applying methods/techniques in different aspects of the system for clinical text understanding, at both corpus and document level. We deal with two major research questions: First, we explore the question of How to model the underlying relationships from clinical notes at corpus level? Documents clustering methods can group clinical notes into meaningful clusters, which can assist physicians and patients to understand medical conditions and diseases from clinical notes. We use Nonnegative Matrix Factorization (NMF) and Multi-view NMF to cluster clinical notes based on extracted medical concepts. The clustering results display latent patterns existed among clinical notes. Our method provides a feasible way to visualize a corpus of clinical documents. Based on extracted concepts, we further build a symptom-medication (Symp-Med) graph to model the Symp-Med relations in clinical notes corpus. We develop two Symp-Med matching algorithms to predict and recommend medications for patients based on their symptoms. Second, we want to solve the question of How to integrate structured knowledge with unstructured text to improve results for Clinical NLP tasks? On the one hand, the unstructured clinical text contains lots of information about medical conditions. On the other hand, structured Knowledge Bases (KBs) are frequently used for supporting clinical NLP tasks. We propose graph-regularized word embedding models to integrate knowledge from both KBs and free text. We evaluate our models on standard datasets and biomedical NLP tasks, and results showed encouraging improvements on both datasets. We further apply the graph-regularized word embedding models and present a novel approach to automatically infer the most probable diagnosis from a given clinical narrative.Ph.D., Information Studies -- Drexel University, 201

    Doublet method for very fast autocoding

    Get PDF
    BACKGROUND: Autocoding (or automatic concept indexing) occurs when a software program extracts terms contained within text and maps them to a standard list of concepts contained in a nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the concepts represented in the text. Because textual data accumulates rapidly in biomedical institutions, the computational methods used to autocode text must be very fast. The purpose of this paper is to describe the doublet method, a new algorithm for very fast autocoding. METHODS: An autocoder was written that transforms plain-text into intercalated word doublets (e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces, produces aqueous, aqueous humor"). Each doublet is checked against an index of doublets extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific for each doublet found in the nomenclature. Text doublets that do not match the index of doublets extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching doublets from text are concatenated and matched against nomenclature terms (also represented as runs of doublets). RESULTS: The doublet autocoder was compared for speed and performance against a previously published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search) and the same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms). In side-by-side comparison on the same computer, the doublet method autocoder was 8.4 times faster than the phrase autocoder (211 seconds versus 1,776 seconds). The doublet method codes 0.8 Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the doublet autocoder successfully matched terms that were missed by the phrase autocoder, while the phrase autocoder found no terms that were missed by the doublet autocoder. CONCLUSIONS: The doublet method of autocoding is a novel algorithm for rapid text autocoding. The method will work with any nomenclature and will parse any ascii plain-text. An implementation of the algorithm in Perl is provided with this article. The algorithm, the Perl implementation, the neoplasm nomenclature, and Perl itself, are all open source materials
    corecore