5,809 research outputs found

    Software como um Serviço: uma plataforma eficaz para oferta de sistemas holísticos de gestão da performance

    Get PDF
    This study main objective was to assess the viability of development of a Performance Management (PM) system, delivered in the form of Software as a Service (SaaS), specific for the hospitality industry and to evaluate the benefits of its use. Software deployed in the cloud, delivered and licensed as a service, is becoming increasingly common and accepted in a business context. Although, Business Intelligence (BI) solutions are not usually distributed in the SaaS model, there are some examples that this is changing. To achieve the study objective, design science research methodology was employed in the development of a prototype. This prototype was deployed in four hotels and its results evaluated. Evaluation of the prototype was focused both on the system technical characteristics and business benefits. Results shown that hotels were very satisfied with the system and that building a prototype and making it available in the form of SaaS is a good solution to assess BI systems contribution to improve management performance.O objetivo principal deste estudo é avaliar a viabilidade de desenvolvimento de um sistema de Gestão da Performance, entregue sob a forma de “Software como Serviço” (SaaS), específico para o setor hoteleiro, e também avaliar os benefícios de seu uso. O software implantado na cloud, entregue e licenciado como um serviço, é cada vez mais aceite num contexto de negócios. Todavia, não é comum que soluções de Business Intelligence (BI) sejam distribuídas neste modelo SaaS. No entanto, existem alguns exemplos de que isso se está a alterar. Para atingir o objetivo do estudo, foi utilizada Design Science Research como metodologia de pesquisa científica para desenvolvimento de um protótipo. Este protótipo foi implementado em quatro hotéis para que os seus resultados pudessem ser avaliados. A avaliação foi focada tanto nas características técnicas do sistema como nos benefícios para o negócio. Os resultados mostraram que os hotéis estavam muito satisfeitos com o sistema e que construir um protótipo e disponibilizá-lo sob a forma de SaaS é uma boa solução para avaliar a contribuição dos sistemas de BI para melhorar o desempenho da gestão.info:eu-repo/semantics/publishedVersio

    Lean, agile, resilient and green supply chain management interoperability assessment methodology

    Get PDF
    Dissertação para obtenção de grau de Mestre em Engenharia e Gestão Industrial (MEGI)Supply Chain Management has become a tactic asset for the current global competition situation. Innovative strategies such as Lean, Agile, Resilient and Green emerged as a response, requiring high levels of cooperation and of great complexity. However, the strategic alignment of operations with partners in supply chains is affected by lack of interoperability. The present work provides a framework to enhance SC competitiveness and performance by assessing interoperable SCM Practices applied in automotive industry. Through a pragmatic interoperability approach, this methodology describes in detail the form of application using analytical hierarchical process (AHP) and Fuzzy sets as support decision making models, ensuring a systematic approach to the analysis of interoperability with appropriate criteria for assessment of situations that require high levels of collaboration between partners. Through a case study in a Portuguese automaker, it was possible to test the methodology and analyse which areas lack interoperability in the implementation of SCM practices

    Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming

    Full text link
    [EN] In today's volatile business arena, companies need to be resilient to deal with the unexpected. One of the main pillars of enterprise resilience is the capacity to anticipate, prevent and prepare in advance for disruptions. From this perspective, the paper proposes a mixed-integer linear programming (MILP) model for optimising preparedness capacity. Based on the proposed reference framework for enterprise resilience enhancement, the MILP optimises the activation of preventive actions to reduce proneness to disruption. To do so, the objective function minimizes the sum of the annual expected cost of disruptive events after implementing preventive actions and the annual cost of such actions. Moreover, the algorithm includes a constraint capping the investment in preventive actions and an attenuation formula to deal with the joint savings produced by the activation of two or more preventive actions on the same disruptive event. The management and business rationale for proposing the MILP approach is to keep it as simple and comprehensible as possible so that it does not require highly mathematically skilled personnel, thus allowing top managers at enterprises of any size to apply it effortlessly. Finally, a real pilot case study was performed to validate the mathematical formulation.This work was supported by the Spanish State Research Agency (Agencia Estatal de Investigacion) under the Reference No. RTI2018-101344-B-I00-AR.Sanchis, R.; Duran-Heras, A.; Poler, R. (2020). Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming. Mathematics. 8(9):1-29. https://doi.org/10.3390/math8091596S12989Day, J. M. (2013). Fostering emergent resilience: the complex adaptive supply network of disaster relief. International Journal of Production Research, 52(7), 1970-1988. doi:10.1080/00207543.2013.787496Kumar, S., & Anbanandam, R. (2019). An integrated Delphi – fuzzy logic approach for measuring supply chain resilience: an illustrative case from manufacturing industry. Measuring Business Excellence, 23(3), 350-375. doi:10.1108/mbe-01-2019-0001Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. doi:10.1108/09574090910954873Madni, A. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience Engineering. IEEE Systems Journal, 3(2), 181-191. doi:10.1109/jsyst.2009.2017397Gilly, J.-P., Kechidi, M., & Talbot, D. (2014). Resilience of organisations and territories: The role of pivot firms. European Management Journal, 32(4), 596-602. doi:10.1016/j.emj.2013.09.004Tomlin, B. (2006). On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks. Management Science, 52(5), 639-657. doi:10.1287/mnsc.1060.0515Haimes, Y. Y., Crowther, K., & Horowitz, B. M. (2008). Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering, 11(4), 287-308. doi:10.1002/sys.20101Sanchis, R., Canetta, L., & Poler, R. (2020). A Conceptual Reference Framework for Enterprise Resilience Enhancement. Sustainability, 12(4), 1464. doi:10.3390/su12041464Lee, A. V., Vargo, J., & Seville, E. (2013). Developing a Tool to Measure and Compare Organizations’ Resilience. Natural Hazards Review, 14(1), 29-41. doi:10.1061/(asce)nh.1527-6996.0000075Kim, Y., Chen, Y.-S., & Linderman, K. (2014). Supply network disruption and resilience: A network structural perspective. Journal of Operations Management, 33-34(1), 43-59. doi:10.1016/j.jom.2014.10.006Soni, U., Jain, V., & Kumar, S. (2014). Measuring supply chain resilience using a deterministic modeling approach. Computers & Industrial Engineering, 74, 11-25. doi:10.1016/j.cie.2014.04.019Munoz, A., & Dunbar, M. (2015). On the quantification of operational supply chain resilience. International Journal of Production Research, 53(22), 6736-6751. doi:10.1080/00207543.2015.1057296Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. Journal of Business Logistics, 34(1), 46-76. doi:10.1111/jbl.12009Manopiniwes, W., & Irohara, T. (2016). Stochastic optimisation model for integrated decisions on relief supply chains: preparedness for disaster response. International Journal of Production Research, 55(4), 979-996. doi:10.1080/00207543.2016.1211340Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327Namdar, J., Li, X., Sawhney, R., & Pradhan, N. (2017). Supply chain resilience for single and multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56(6), 2339-2360. doi:10.1080/00207543.2017.1370149Wang, X., Herty, M., & Zhao, L. (2015). Contingent rerouting for enhancing supply chain resilience from supplier behavior perspective. International Transactions in Operational Research, 23(4), 775-796. doi:10.1111/itor.12151Aleksić, A., Stefanović, M., Arsovski, S., & Tadić, D. (2013). An assessment of organizational resilience potential in SMEs of the process industry, a fuzzy approach. Journal of Loss Prevention in the Process Industries, 26(6), 1238-1245. doi:10.1016/j.jlp.2013.06.004Tan, R. R., Aviso, K. B., Cayamanda, C. D., Chiu, A. S. F., Promentilla, M. A. B., Ubando, A. T., & Yu, K. D. S. (2016). A fuzzy linear programming enterprise input–output model for optimal crisis operations in industrial complexes. International Journal of Production Economics, 181, 410-418. doi:10.1016/j.ijpe.2015.10.012Tadić, D., Aleksić, A., Stefanović, M., & Arsovski, S. (2014). Evaluation and Ranking of Organizational Resilience Factors by Using a Two-Step Fuzzy AHP and Fuzzy TOPSIS. Mathematical Problems in Engineering, 2014, 1-13. doi:10.1155/2014/418085Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: definition, review and theoretical foundations for further study. International Journal of Production Research, 53(18), 5592-5623. doi:10.1080/00207543.2015.1037934Shirali, G. A., Shekari, M., & Angali, K. A. (2016). Quantitative assessment of resilience safety culture using principal components analysis and numerical taxonomy: A case study in a petrochemical plant. Journal of Loss Prevention in the Process Industries, 40, 277-284. doi:10.1016/j.jlp.2016.01.007Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488. doi:10.1016/j.ijpe.2005.12.006Sanchis, R., & Poler, R. (2019). Origins of Disruptions Sources Framework to Support the Enterprise Resilience Analysis. IFAC-PapersOnLine, 52(13), 2062-2067. doi:10.1016/j.ifacol.2019.11.509Sanchis, R., & Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. IFAC Proceedings Volumes, 46(9), 700-705. doi:10.3182/20130619-3-ru-3018.00600Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. doi:10.1016/s0959-3780(03)00054-2Sandanam, A., Diedrich, A., Gurney, G., & Richardson, T. (2018). Perceptions of Cyclone Preparedness: Assessing the Role of Individual Adaptive Capacity and Social Capital in the Wet Tropics, Australia. Sustainability, 10(4), 1165. doi:10.3390/su10041165Tarafdar, M., & Qrunfleh, S. (2016). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925-938. doi:10.1080/00207543.2016.1203079Svensson, G. (2002). A conceptual framework of vulnerability in firms’ inbound and outbound logistics flows. International Journal of Physical Distribution & Logistics Management, 32(2), 110-134. doi:10.1108/09600030210421723Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). ENSURING SUPPLY CHAIN RESILIENCE: DEVELOPMENT OF A CONCEPTUAL FRAMEWORK. Journal of Business Logistics, 31(1), 1-21. doi:10.1002/j.2158-1592.2010.tb00125.xBDO Technology Risk Factor Report https://www.bdo.com/getattachment/d10c417f-beb7-4bb9-8835-2b2ec727ce2b/attachment.aspx?2017-Technology-Riskfactor-ReportBrochure_WEB.pdfSupply Chain Resilience Report http://www.bcifiles.com/bci-supply-chain-resilience-2015.pdfLichtenstein, S., & Newman, J. R. (1967). Empirical scaling of common verbal phrases associated with numerical probabilities. Psychonomic Science, 9(10), 563-564. doi:10.3758/bf03327890Hamm, R. M. (1991). Selection of verbal probabilities: A solution for some problems of verbal probability expression. Organizational Behavior and Human Decision Processes, 48(2), 193-223. doi:10.1016/0749-5978(91)90012-iDickson, T. J. (2002). Calculating Risks: Fine’s Mathematical Formula 30 Years Later. Journal of Outdoor and Environmental Education, 6(1), 31-39. doi:10.1007/bf03400742Patterson, F. D., & Neailey, K. (2002). A Risk Register Database System to aid the management of project risk. International Journal of Project Management, 20(5), 365-374. doi:10.1016/s0263-7863(01)00040-0Chou, T.-C., & Talalay, P. (1983). Analysis of combined drug effects: a new look at a very old problem. Trends in Pharmacological Sciences, 4, 450-454. doi:10.1016/0165-6147(83)90490-xChou, T.-C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27-55. doi:10.1016/0065-2571(84)90007-4Belen’kii, M. S., & Schinazi, R. F. (1994). Multiple drug effect analysis with confidence interval. Antiviral Research, 25(1), 1-11. doi:10.1016/0166-3542(94)90089-2Glossary of Terms and Symbols Used in Pharmacology. Pharmacology and Experimental Therapeutics Department at Boston University School of Medicine http://www.bumc.bu.edu/busm-pm/academics/resources/glossary/Sanchis, R., & Poler, R. (2019). Mitigation proposal for the enhancement of enterprise resilience against supply disruptions. IFAC-PapersOnLine, 52(13), 2833-2838. doi:10.1016/j.ifacol.2019.11.638Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A Modeling Language for Mathematical Optimization. SIAM Review, 59(2), 295-320. doi:10.1137/15m1020575Jump https://jumdev/JuMjl/devForrest, J., & Lougee-Heimer, R. (2005). CBC User Guide. Emerging Theory, Methods, and Applications, 257-277. doi:10.1287/educ.1053.0020Agencia Estatal de Meteorología. Las Gotas Frías/DANAs: Ideas y Conceptos Básicos https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/dana_ext.pdfDriessen, P., Hegger, D., Kundzewicz, Z., van Rijswick, H., Crabbé, A., Larrue, C., … Wiering, M. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10(11), 1595. doi:10.3390/w1011159

    Optimising the preparedness capacity of enterprise resilience using mathematical programming

    Get PDF
    This article belongs to the Special Issue Mathematical Methods and Analysis for the Industrial Management and Business.In today's volatile business arena, companies need to be resilient to deal with the unexpected. One of the main pillars of enterprise resilience is the capacity to anticipate, prevent and prepare in advance for disruptions. From this perspective, the paper proposes a mixed-integer linear programming (MILP) model for optimising preparedness capacity. Based on the proposed reference framework for enterprise resilience enhancement, the MILP optimises the activation of preventive actions to reduce proneness to disruption. To do so, the objective function minimizes the sum of the annual expected cost of disruptive events after implementing preventive actions and the annual cost of such actions. Moreover, the algorithm includes a constraint capping the investment in preventive actions and an attenuation formula to deal with the joint savings produced by the activation of two or more preventive actions on the same disruptive event. The management and business rationale for proposing the MILP approach is to keep it as simple and comprehensible as possible so that it does not require highly mathematically skilled personnel, thus allowing top managers at enterprises of any size to apply it effortlessly. Finally, a real pilot case study was performed to validate the mathematical formulation.This work was supported by the Spanish State Research Agency (Agencia Estatal de Investigación) under the Reference No. RTI2018-101344-B-I00-AR

    Capabilities of the Intelligent Manufacturing Enterprise

    Get PDF
    Manufacturing enterprises encounter pressure to digitalize and increase their intelligence as their environments demand improved productivity and agility. Based on existing research on intelligent enterprises, manufacturing enterprises, and data technologies, the authors developed an explanatory model for the derivation of a definition of the intelligent manufacturing enterprise. This paper expands the formerly developed model by presenting the characteristics of the intelligent manufacturing enterprise and the capabilities needed to become such an enterprise

    Exploring the power of psychological empowerment in boosting workforce agility in SMEs

    Get PDF
    This study investigates the impact of psychological empowerment on workforce agility in small and medium-sized enterprises (SMEs). The study employs a quantitative analysis to measure levels of psychological empowerment and workforce agility, assessing the dimensions of psychological empowerment, including Meaning, Self-determination, Competences, and Impact, and examining their influence on workforce agility. The results reveal a significant positive relationship between the dimensions of competence and meaning in psychological empowerment and workforce agility. However, the dimensions of impact and self-determination do not exhibit a strong relationship with workforce agility. This research contributes to the existing literature by addressing the gap in knowledge regarding the impact of psychological empowerment on workforce agility in Moroccan SMEs. The findings have practical implications for managers and decision-makers in SMEs, suggesting that organizations should focus on improving their employees' skills and enhancing their sense of work meaning to foster resilience and adaptability. By fostering workforce agility through empowerment, organizations can create a more engaged and adaptable workforce, potentially leading to increased productivity and competitiveness.   Keywords: Psychological empowerment, organizational agility, workforce agility, small and medium-sized enterprises (SMEs), construction sector firms. JEL Classification : O15, C3, M1, L74 Paper type: Empirical researchThis study investigates the impact of psychological empowerment on workforce agility in small and medium-sized enterprises (SMEs). The study employs a quantitative analysis to measure levels of psychological empowerment and workforce agility, assessing the dimensions of psychological empowerment, including Meaning, Self-determination, Competences, and Impact, and examining their influence on workforce agility. The results reveal a significant positive relationship between the dimensions of competence and meaning in psychological empowerment and workforce agility. However, the dimensions of impact and self-determination do not exhibit a strong relationship with workforce agility. This research contributes to the existing literature by addressing the gap in knowledge regarding the impact of psychological empowerment on workforce agility in Moroccan SMEs. The findings have practical implications for managers and decision-makers in SMEs, suggesting that organizations should focus on improving their employees' skills and enhancing their sense of work meaning to foster resilience and adaptability. By fostering workforce agility through empowerment, organizations can create a more engaged and adaptable workforce, potentially leading to increased productivity and competitiveness.   Keywords: Psychological empowerment, organizational agility, workforce agility, small and medium-sized enterprises (SMEs), construction sector firms. JEL Classification : O15, C3, M1, L74 Paper type: Empirical researc

    Agile Six Sigma – A Descriptive Approach

    Get PDF
    Organizations are more dynamic, competitive and uncertain than in the past; therefore, they must be highly flexible in order to provide an agile condition for responsiveness to customer changes. This paper aims to explain how being Agile can improve the Six-Sigma methodology and explore how Agile and Lean Six Sigma (LSS) principles work together. We will outline the benefits of their relation with each other
    corecore