761 research outputs found

    Challenges for adaptation in agent societies

    Full text link
    The final publication is available at Springer via http://dx.doi.org/[insert DOIAdaptation in multiagent systems societies provides a paradigm for allowing these societies to change dynamically in order to satisfy the current requirements of the system. This support is especially required for the next generation of systems that focus on open, dynamic, and adaptive applications. In this paper, we analyze the current state of the art regarding approaches that tackle the adaptation issue in these agent societies. We survey the most relevant works up to now in order to highlight the most remarkable features according to what they support and how this support is provided. In order to compare these approaches, we also identify different characteristics of the adaptation process that are grouped in different phases. Finally, we discuss some of the most important considerations about the analyzed approaches, and we provide some interesting guidelines as open issues that should be required in future developments.This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, the European Cooperation in the field of Scientific and Technical Research IC0801 AT, and projects TIN2009-13839-C03-01 and TIN2011-27652-C03-01.Alberola Oltra, JM.; Julian Inglada, VJ.; García-Fornes, A. (2014). Challenges for adaptation in agent societies. Knowledge and Information Systems. 38(1):1-34. https://doi.org/10.1007/s10115-012-0565-yS134381Aamodt A, Plaza E (1994) Case-based reasoning; foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59Abdallah S, Lesser V (2007) Multiagent reinforcement learning and self-organization in a network of agents. In: Proceedings of the sixth international joint conference on autonomous agents and multi-agent systems, pp 172–179Abdu H, Lutfiyya H, Bauer MA (1999) A model for adaptive monitoring configurations. In: Proceedings of the VI IFIP/IEEE IM conference on network management, pp 371–384Alberola JM, Julian V, Garcia-Fornes A (2011) A cost-based transition approach for multiagent systems reorganization. In: Proceedings of the 10th international conference on aut. agents and MAS (AAMAS11), pp 1221–1222Alberola JM, Julian V, Garcia-Fornes A (2012) Multi-dimensional transition deliberation for organization adaptation in multiagent systems. In: Proceedings of the 11th international conference on aut. agents and MAS (AAMAS12) (in press)Argente E, Julian V, Botti V (2006) Multi-agent system development based on organizations. Electron Notes Theor Comput Sci 160(3):55–71Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the Thomas approach. Knowl Inf Syst 29(2):379–403Ashford SJ, Taylor MS (1990) Adaptation to work transitions. An integrative approach. Res Pers Hum Resour Manag 8:1–39Ashford SJ, Blatt R, Walle DV (2003) Reflections on the looking glass: a review of research on feedback-seeking behavior in organizations. J Manag 29(6):773–799Astley WG, Van de Ven AH (1983) Central perspectives and debates in organization theory. Adm Sci Q 28(2):245–273Bond AH, Gasser L (1988) A survey of distributed artificial intelligence readings in distributed artificial intelligence. Morgan Kaufmann, Los AltosBou E, López-Sánchez M, Rodríguez-Aguilar JA (2006) Adaptation of autonomic electronic institutions through norms and institutional agents In: Engineering societies in the agents world. Number LNAI 445, Springer, Dublin, pp 300–319Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2007) Towards self-configuration in autonomic electronic institutions. In: COIN 2006 workshops. Number LNAI 4386, pp 220–235Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2008) Using case-based reasoning in autonomic electronic institutions. In: Proceedings of the 2007 international conference on coordination, organizations, institutions, and norms in agent systems III, pp 125–138Brett JM, Feldman DC, Weingart LR (1990) Feedback-seeking behavior of new hires and job changers. J Manag 16:737–749Bulka B, Gaston ME, desJardins M (2007) Local strategy learning in networked multi-agent team formation. Auton Agents Multi-Agent Syst 15(1):29–45Campos J, López-Sánchez M, Esteva M (2009) Assistance layer, a step forward in multi-agent systems. In: Coordination support international joint conference on autonomous agents and multiagent systems (AAMAS), pp 1301–1302Campos J, Esteva M, López-Sánchez M, Morales J, Salamó M (2011) Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing 91(2):169–215Carley KM, and Gasser L (1999) Computational organization theory. Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge, pp 299–330Carvalho G, Almeida H, Gatti M, Vinicius G, Paes R, Perkusich, A, Lucena C (2006) Dynamic law evolution in governance mechanisms for open multi-agent systems. In: Second workshop on software engineering for agent-oriented systemsCernuzzi L, Zambonelli F (2011) Adaptive organizational changes in agent-oriented methodologies. Knowl Eng Rev 26(2):175–190Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (2009) Software engineering for self-adaptive systems: a research roadmap, pp 1–26Corkill DD, Lesser VR (1983) The use of meta-level control for coordination in a distributed problem solving networks. In: Proceedings of the eighth international joint conference on artificial intelligence. IEEE Computer Society Press, pp 748–756Corkill DD, Lander SE (1998) Diversity in agent organizations. Object Mag 8(4):41–47de Paz JF, Bajo J, González A, Rodríguez S, Corchado JM (2012) Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction. Knowl Inf Syst 30(1):155–177DeLoach SA, Matson E (2004) An organizational model for designing adaptive multiagent systems. In: The AAAI-04 workshop on agent organizations: theory and practice (AOTP), pp 66–73DeLoach SA, Oyeman W, Matson E (2008) A capabilities-based model for adaptive organizations. Auton Agents Multi-Agent Syst 16:13–56Dignum V, Dignum F (2001) Modelling agent societies: co-ordination frameworks and institutions progress in artificial intelligence. LNAI 2258, pp 191–204Dignum V (2004) A model for organizational interaction: based on agents, founded in logic. PhD dissertation, Universiteit Utrecht. SIKS dissertation series 2004-1Dignum V, Dignum F, Sonenberg L (2004) Towards dynamic reorganization of agent societies. In: Proceedings of the workshop on coordination in emergent agent societies, pp 22–27Dignum V, Dignum F (2006) Exploring congruence between organizational structure and task performance: a simulation approach coordination, organization, institutions and norms in agent systems I. In: Proceedings of the ANIREM ’05/OOOP ’05, pp 213–230Dignum V, Dignum F (2007) A logic for agent organizations. In: Proceedings of the multi-agent logics, languages, and organisations federated workshops (MALLOW ’007), formal approaches to multi-agent systems (FAMAS ’007) workshopFox MS (1981) Formalizing virtual organizations. IEEE Transact Syst Man Cybern 11(1):70–80Gaston ME, desJardins M (2005) Agent-organized networks for dynamic team formation. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, pp 230–237Gaston ME, desJardins M (2008) The effect of network structure on dynamic team formation in multi-agent systems. Comput Intell 24(2):122–157Norbert G, Philippe M (1997) The reorganization of societies of autonomous agents. In: MAAMAW-97. Springer, London, pp 98–111Goldman CV, Rosenschein JS (1997) Evolving organizations of agents American association for artificial intelligence. In: Multiagent learning workshop at AAAI97Greve HR (1998) Performance, aspirations, and risky organizational change. Adm Sci Quart 43(1):58–86Guessoum Z, Ziane M, Faci N (2004) Monitoring and organizational-level adaptation of multi-agent systems. In: Proceedings of the AAMAS ’04, pp 514–521Hoogendoorn M, Treur J (2006) An adaptive multi-agent organization model based on dynamic role allocation. In: Proceedings of the IAT ’06, pp 474–481Horling B, Benyo B, Lesser V (1999) Using self-diagnosis to adapt organizational structures. In: Proceedings of the 5th international conference on autonomous agents, pp 529–536Horling B, Lesser V (2005) A survey of multi-agent organizational paradigms. Knowl Eng Rev 19(4): 281–316Hrebiniak LG, Joyce WF (1985) Organizational adaptation: strategic choice and environmental determinism. Adm Sci Quart 30(3):336–349Hübner JF, Sichman JS, Boissier O (2002) MOISE+: towards a structural, functional, and deontic model for MAS organization. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, pp 501–502Hübner JF, Sichman JS, Boissier O (2004) Using the MOISE+ for a cooperative framework of MAS reorganisation. In: Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA ’04), vol 3171, pp 506–515Hübner JF, Boissier O, Sichman JS (2005) Specifying E-alliance contract dynamics through the MOISE + reorganisation process Anais do V Encontro Nacional de Inteligde Inteligncia Artificial (ENIA 2005)Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44(4):35–41Kamboj S, Decker KS (2006) Organizational self-design in semi-dynamic environments In: 2007 IJCAI workshop on agent organizations: models and simulations (AOMS@IJCAI), pp 335–337Katz D, Kahn RL (1966) The social psychology of organizations. Wiley, New YorkKelly D, Amburgey TL (1991) Organizational inertia and momentum: a dynamic model of strategic change. Acad Manag J 34(3):591–612Kephart J, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50Kim DH (1993) The link between individual and organizational learning. Sloan Manag Rev 35(1):37–50Kota R, Gibbins N, Jennings NR (2009a) Decentralised structural adaptation in agent organisations organized adaptation in multi-agent systems, pp 54–71Kota R, Gibbins N, Jennings NR (2009b) Self-organising agent organisations. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems (AAMAS 2009)Kota R, Gibbins N, Jennings NR (2012) Decentralised approaches for self-adaptation in agent organisations. ACM Trans Auton Adapt Syst 7(1):1–28Kotter J, Schlesinger L (1979) Choosing strategies for change. Harv Bus Rev 106–1145Lesser VR (1998) Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton Agents Multi-Agent Syst 89–111Levitt B, March JG (1988) Organizational learning. Annu Rev Sociol 14:319–340Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (a roadmap for agent based computing)Mathieu P, Routier JC, Secq Y (2002a) Dynamic organization of multi-agent systems. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 1, pp 451–452Mathieu P, Routier JC, Secq Y (2002b) Principles for dynamic multi-agent organizations. In: Proceedings of the 5th Pacific rim international workshop on multi agents: intelligent agents and multi-agent systems, pp 109–122Matson E, DeLoach S (2003) Using dynamic capability evaluation to organize a team of cooperative, autonomous robots. In: Proceedings of the 2003 international conference on artificial intelligence (IC-AI ’03), Las Vegas, pp 23–26Matson E, DeLoach S (2004) Enabling intra-robotic capabilities adaptation using an organization-based multiagent system. ICRA, pp 2135–2140Matson E, DeLoach S (2005) Formal transition in agent organizations. In: IEEE international conference on knowledge intensive multiagent systems (KIMAS ’05)Matson E, Bhatnagar R (2006) Properties of capability based agent organization transition. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology IAT ’06, pp 59–65Morales J, López-Sánchez M, Esteva, M (2011) Using experience to generate new regulations. In: Proceedings of the twenty-second international joint conference on artificial Intelligence (IJCAI-11), pp 307–312Muhlestein D, Lim S (2011) Online learning with social computing based interest sharing. Knowl Inf Syst 26(1):31–58Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second AAMAS ’03, pp 552–559Orlikowski WJ (1996) Improvising organizational transformation over time: a situated change perspective. Inf Syst Res 7(1):63–92Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agents Multi-Agent Syst 11:387–434Ringold PL, Alegria J, Czaplewski RL, Mulder BS, Tolle T, Burnett K (1996) Adaptive monitoring design for ecosystem management. Ecol Appl 6(3):745–747Routier J, Mathieu P, Secq Y (2001) Dynamic skill learning: a support to agent evolution. In: Proceedings of the artificial intelligence and the simulation of behaviour symposium on adaptive agents and multi-agent systems (AISB ’01), pp 25–32Scott RW (2002) Organizations: rational, natural, and open systems, 5th edn. Prentice Hall International, New YorkSeelam A (2009) Reorganization of massive multiagent systems: MOTL/O http://books.google.es/books?id=R-s8cgAACAAJ . Southern Illinois University CarbondaleSo Y, Durfee EH (1993) An organizational self-design model for organizational change. In: AAAI93 workshop on AI and theories of groups and oranizations, pp 8–15So Y, Durfee EH (1998) Designing organizations for computational agents. Simulating organizations. MIT Press, Cambridge, pp 47–64Schwaninger M (2000) A theory for optimal organization. Technical report. Institute of Management at the University of St. Gallen, SwitzerlandTantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. In: IEEE 11th international conference on data mining 2011, pp 1236–1241Wang Z, Liang X (2006) A graph based simulation of reorganization in multi-agent systems. In: IEEE WICACM international conference on intelligent agent technology, pp 129–132Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Weick KE (1979) The social psychology of organizing, 2nd edn. Addison-Wesley, ReadingWeyns D, Haesevoets R, Helleboogh A, Holvoet T, Joosen W (2010a) The MACODO middleware for context-driven dynamic agent organizations. ACM Transact Auton Adapt Syst 3:1–3:28Weyns D, Malek S, Andersson J (2010b) FORMS: a formal reference model for self-adaptation. In: Proceedings of the 7th international conference on autonomic computing, pp 205–214Weyns D, Georgeff M (2010) Self-adaptation using multiagent systems. IEEE Softw 27(1):86–91Zhong C (2006) An investigation of reorganization algorithms. Master-thesi

    Identifying Influential Agents In Social Systems

    Get PDF
    This dissertation addresses the problem of influence maximization in social networks. In- fluence maximization is applicable to many types of real-world problems, including modeling contagion, technology adoption, and viral marketing. Here we examine an advertisement domain in which the overarching goal is to find the influential nodes in a social network, based on the network structure and the interactions, as targets of advertisement. The assumption is that advertisement budget limits prevent us from sending the advertisement to everybody in the network. Therefore, a wise selection of the people can be beneficial in increasing the product adoption. To model these social systems, agent-based modeling, a powerful tool for the study of phenomena that are difficult to observe within the confines of the laboratory, is used. To analyze marketing scenarios, this dissertation proposes a new method for propagating information through a social system and demonstrates how it can be used to develop a product advertisement strategy in a simulated market. We consider the desire of agents toward purchasing an item as a random variable and solve the influence maximization problem in steady state using an optimization method to assign the advertisement of available products to appropriate messenger agents. Our market simulation 1) accounts for the effects of group membership on agent attitudes 2) has a network structure that is similar to realistic human systems 3) models inter-product preference correlations that can be learned from market data. The results on synthetic data show that this method is significantly better than network analysis methods based on centrality measures. The optimized influence maximization (OIM) described above, has some limitations. For instance, it relies on a global estimation of the interaction among agents in the network, rendering it incapable of handling large networks. Although OIM is capable of finding the influential nodes in the social network in an optimized way and targeting them for advertising, in large networks, performing the matrix operations required to find the optimized solution is intractable. To overcome this limitation, we then propose a hierarchical influence maximization (HIM) iii algorithm for scaling influence maximization to larger networks. In the hierarchical method the network is partitioned into multiple smaller networks that can be solved exactly with optimization techniques, assuming a generalized IC model, to identify a candidate set of seed nodes. The candidate nodes are used to create a distance-preserving abstract version of the network that maintains an aggregate influence model between partitions. The budget limitation for the advertising dictates the algorithm’s stopping point. On synthetic datasets, we show that our method comes close to the optimal node selection, at substantially lower runtime costs. We present results from applying the HIM algorithm to real-world datasets collected from social media sites with large numbers of users (Epinions, SlashDot, and WikiVote) and compare it with two benchmarks, PMIA and DegreeDiscount, to examine the scalability and performance. Our experimental results reveal that HIM scales to larger networks but is outperformed by degreebased algorithms in highly-connected networks. However, HIM performs well in modular networks where the communities are clearly separable with small number of cross-community edges. This finding suggests that for practical applications it is useful to account for network properties when selecting an influence maximization method

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Reorganization in Dynamic Agent Societies

    Full text link
    En la nueva era de tecnologías de la información, los sistemas tienden a ser cada vez más dinámicos, compuestos por entidades heterogéneas capaces de entrar y salir del sistema, interaccionar entre ellas, y adaptarse a las necesidades del entorno. Los sistemas multiagente han contribuído en los ultimos años, a modelar, diseñar e implementar sistemas autónomos con capacidad de interacción y comunicación. Estos sistemas se han modelado principalmente, a través de sociedades de agentes, las cuales facilitan la interación, organización y cooperación de agentes heterogéneos para conseguir diferentes objetivos. Para que estos paradigmas puedan ser utilizados para el desarrollo de nuevas generaciones de sistemas, características como dinamicidad y capacidad de reorganización deben estar incorporadas en el modelado, gestión y ejecución de estas sociedades de agentes. Concretamente, la reorganización en sociedades de agentes ofrece un paradigma para diseñar aplicaciones abiertas, dinámicas y adaptativas. Este proceso requiere determinar las consecuencias de cambiar el sistema, no sólo en términos de los beneficios conseguidos sinó además, midiendo los costes de adaptación así como el impacto que estos cambios tienen en todos los componentes del sistema. Las propuestas actuales de reorganización, básicamente abordan este proceso como respuestas de la sociedad cuando ocurre un cambio, o bien como un mecanismo para mejorar la utilidad del sistema. Sin embargo, no se pueden definir procesos complejos de decisión que obtengan la mejor configuración de los componentes organizacionales en cada momento, basándose en una evaluación de los beneficios que se podrían obtener así como de los costes asociados al proceso. Teniendo en cuenta este objetivo, esta tesis explora el área de reorganización en sociedades de agentes y se centra principalmente, en una propuesta novedosa para reorganización. Nuestra propuesta ofrece un soporte de toma de decisiones que considera cambios en múltiplesAlberola Oltra, JM. (2013). Reorganization in Dynamic Agent Societies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19243Palanci

    Trusted community : a novel multiagent organisation for open distributed systems

    Get PDF
    [no abstract

    A Review on Intelligent Agent Systems

    Get PDF
    Multi-agent system (MAS) is a common way of exploiting the potential power of agent by combining many agents in one system. Each agent in a multivalent system has incomplete information and is in capable of solving entire problem on its own. Multi-agent system offers modularity. If a problem domain is particularly complex, large and contain uncertainty, then the one way to address, it to develop a number of functional specific and modular agent that are specialized at solving various problems individually. It also consists of heterogeneous agents implemented by different tool and techniques. MAS can be defining as loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver. These problem solvers, often ailed agent are autonomous and can be heterogeneous in nature. MAS is followed by characteristics, Future application, What to be change, problem solving agent, tools and techniques used, various architecture, multi agent applications and finally future Direction and conclusion. Various Characteristics are limited viewpoint, effectively, decentralized; computation is asynchronous, use of genetic algorithms. It has some drawbacks which must be change to make MAS more effective. In the session of problem solving of MAS, the agent performance measure contains many factors to improve it like formulation of problems, task allocation, organizations. In planning of multivalent this paper cover self-interested multivalent interactions, modeling of other agents, managing communication, effective allocation of limited resources to multiple agents with managing resources. Using of tool, to make the agent more efficient in task that are often used. The architecture o MAS followed by three layers, explore, wander, avoid obstacles respectively. Further different and task decomposition can yield various architecture like BDI (Belief Desire Intension), RETSINA. Various applications of multi agent system exist today, to solve the real-life problems, new systems are being developed two distinct categories and also many others like process control, telecommunication, air traffic control, transportation systems, commercial management, electronic commerce, entertainment applications, medical applications. The future aspect of MAS to solve problems that are too large, to allow interconnection and interoperation of multiple existing legacy systems etc
    corecore