22,013 research outputs found

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Turkish handwritten text recognition: a case of agglutinative languages

    Get PDF
    We describe a system for recognizing unconstrained Turkish handwritten text. Turkish has agglutinative morphology and theoretically an infinite number of words that can be generated by adding more suffixes to the word. This makes lexicon-based recognition approaches, where the most likely word is selected among all the alternatives in a lexicon, unsuitable for Turkish. We describe our approach to the problem using a Turkish prefix recognizer. First results of the system demonstrates the promise of this approach, with top-10 word recognition rate of about 40% for a small test data of mixed handprint and cursive writing. The lexicon-based approach with a 17,000 word-lexicon (with test words added) achieves 56% top-10 word recognition rate

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Enriching Rare Word Representations in Neural Language Models by Embedding Matrix Augmentation

    Full text link
    The neural language models (NLM) achieve strong generalization capability by learning the dense representation of words and using them to estimate probability distribution function. However, learning the representation of rare words is a challenging problem causing the NLM to produce unreliable probability estimates. To address this problem, we propose a method to enrich representations of rare words in pre-trained NLM and consequently improve its probability estimation performance. The proposed method augments the word embedding matrices of pre-trained NLM while keeping other parameters unchanged. Specifically, our method updates the embedding vectors of rare words using embedding vectors of other semantically and syntactically similar words. To evaluate the proposed method, we enrich the rare street names in the pre-trained NLM and use it to rescore 100-best hypotheses output from the Singapore English speech recognition system. The enriched NLM reduces the word error rate by 6% relative and improves the recognition accuracy of the rare words by 16% absolute as compared to the baseline NLM.Comment: 5 pages, 2 figures, accepted to INTERSPEECH 201
    corecore