328 research outputs found

    Versatile integrated circuit for the acquisition of biopotentials

    Get PDF
    Journal ArticleElectrically active cells in the body produce a wide variety of voltage signals that are useful for medical diagnosis and scientific investigation. These biopotentials span a wide range of amplitudes and frequencies. We have developed a versatile front-end integrated circuit that can be used to amplify many types of bioelectrical signals. The 0.6-μm CMOS chip contains 16 fully-differential amplifiers with gains of 46 dB, 2μVrms input-referred noise, and bandwidths programmable from 10Hz to 10kHz

    Time-domain optimization of amplifiers based on distributed genetic algorithms

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer EngineeringThe work presented in this thesis addresses the task of circuit optimization, helping the designer facing the high performance and high efficiency circuits demands of the market and technology evolution. A novel framework is introduced, based on time-domain analysis, genetic algorithm optimization, and distributed processing. The time-domain optimization methodology is based on the step response of the amplifier. The main advantage of this new time-domain methodology is that, when a given settling-error is reached within the desired settling-time, it is automatically guaranteed that the amplifier has enough open-loop gain, AOL, output-swing (OS), slew-rate (SR), closed loop bandwidth and closed loop stability. Thus, this simplification of the circuit‟s evaluation helps the optimization process to converge faster. The method used to calculate the step response expression of the circuit is based on the inverse Laplace transform applied to the transfer function, symbolically, multiplied by 1/s (which represents the unity input step). Furthermore, may be applied to transfer functions of circuits with unlimited number of zeros/poles, without approximation in order to keep accuracy. Thus, complex circuit, with several design/optimization degrees of freedom can also be considered. The expression of the step response, from the proposed methodology, is based on the DC bias operating point of the devices of the circuit. For this, complex and accurate device models (e.g. BSIM3v3) are integrated. During the optimization process, the time-domain evaluation of the amplifier is used by the genetic algorithm, in the classification of the genetic individuals. The time-domain evaluator is integrated into the developed optimization platform, as independent library, coded using C programming language. The genetic algorithms have demonstrated to be a good approach for optimization since they are flexible and independent from the optimization-objective. Different levels of abstraction can be optimized either system level or circuit level. Optimization of any new block is basically carried-out by simply providing additional configuration files, e.g. chromosome format, in text format; and the circuit library where the fitness value of each individual of the genetic algorithm is computed. Distributed processing is also employed to address the increasing processing time demanded by the complex circuit analysis, and the accurate models of the circuit devices. The communication by remote processing nodes is based on Message Passing interface (MPI). It is demonstrated that the distributed processing reduced the optimization run-time by more than one order of magnitude. Platform assessment is carried by several examples of two-stage amplifiers, which have been optimized and successfully used, embedded, in larger systems, such as data converters. A dedicated example of an inverter-based self-biased two-stage amplifier has been designed, laid-out and fabricated as a stand-alone circuit and experimentally evaluated. The measured results are a direct demonstration of the effectiveness of the proposed time-domain optimization methodology.Portuguese Foundation for the Science and Technology (FCT

    An Ultra-Low-Power Track-and-Hold Amplifier

    Get PDF
    The future of electronics is the Internet of Things (IoT) paradigm, where always-on devices and sensors monitor and transform everyday life. A plethora of applications (such as navigating drivers past road hazards or monitoring bridge and building stresses) employ this technology. These unattended ground-sensor applications require decade(s)-long operational life-times without battery changes. Such electronics demand stringent performance specifications with only nano-Watt power levels.This thesis presents an ultra-low-power track-and-hold amplifier for such systems. It serves as the front-end of a SAR-ADC or the building block for equalizers or filters. This amplifier\u27s design attains exceptional hold times by mitigating switch subthreshold leakage and bulk leakage. Its novel transmission-gate topology achieves wide-swing performance. Though only consuming 100 pico-Watts, it achieves a precision of 7.6 effective number of bits (ENOB). The track-and-hold amplifier was designed in 130-nm CMOS

    Using Modified Bessel Functions for Analysis of Nonlinear Effects in a MOS Transistor Operating in Moderate Inversion

    Get PDF
    This work was supported in part by the NSERC, Canada, in part by the Portuguese Foundation for Science and Technology under Project PESTOEEEI/UI0066/2015 and foRESTER Project PCIF/SSI/0102/2017, and in part by the Academy of Finland.This paper describes analysis of nonlinear effects in a MOS transistor operating in moderate inversion and saturation. The dependence of the drain current on the gate-source and drain-source voltages is described using a modified version of the 'reconciliation' model developed by Y. Tsividis. In the new model, the current components, which correspond to the terms depending exponentially on normalized gate-source or drain-source modulating sinusoidal voltages, are presented using modified Bessel functions. This approach allows one to find the first, second, and third harmonics of the drain current caused by the gate-source or drain-source voltage sinusoidal modulation and find also the intermodulation terms produced by these two modulating voltages. The results are applied to set the requirements to the gate-source and drain-source bias voltages in design of low-distortion and/or low-voltage amplifiers. It is shown that the realization of the stage with the zero value of third-order harmonic requires extremely tight tolerances for the threshold voltage. The suppression of intermodulation terms requires increased drain-source voltage. These recommendations are confirmed by simulations.authorsversionpublishe

    Design of Multi Gb/s Monolithically Integrated Photodiodes and Multi-Stage Transimpedance Amplifiers in Thin-Film SOI CMOS Technology

    Get PDF
    The development of new integrated high-speed Si receivers is requested for short distance optical data link and emerging optical storage (OS) systems, notably for the Gb/s Ethernet standard [1] - [8] and Blue DVD (Blu-Ray, HDDVD) [3], [4], [9]. As requirements on bandwidth, gain, power consumption as well as low read-out noise and cost are quite severe, an optimal design strategy of a monolithically integrated solution, i.e. with on-chip photodetector and transimpedance amplifier (TIA), is required. In optical communication, however, non integrated detectors are usually employed [2] - [8] since the particular indirect energy band properties of Silicon make this semiconductor not very efficient for optical reception at 850nm wavelength. As Si is the most widely used and low cost semiconductor material in electronics and due to the availability of low-cost 850nm transmitters, there is yet a great interest and challenge to integrate such receivers. 1 to 10 Gb/s, high sensitivity and low complexity, low-cost silicon photodetectors for the monolithic integration of optical receivers for short distance applications at 850nm are really an issue as the Si absorption thickness required for high-speed (low transit time and low capacitance) favors thin-film technologies for which the responsivity is low. Some solutions exist but at the price of more costly and complex fabrication processes [10-16]. At the system level, owing to its low dark current (pA range) [17], low capacitor (10fF) for the photodetector [1] and possibility to integrate this detector with high-performance low-capacitance transistors, global thin-film SOI monolithically integrated photoreceivers have potentially higher gain and lower noise performances which in turn, as we will show here, can increase the C-sensitivity and alleviate this requirement on the photodetector itself. Furthermore only SOI photodiodes have so far achieved bandwidth compatible with the 10Gb/s specification and even higher data rate among the "easy to integrate" Si photodetectors [1], [15], [16] and [18]. In the blue and UV wavelengths, these diodes achieve a high responsivity [17] and then combine all the advantages of high speed, low dark current and finally high sensitivity [1]. This makes SOI receivers the best candidate for blue DVD applications and future optical storage generation. This also suggests that blue wavelength for multi Gb/s short reach optical communication could be used in a near future under the condition that the recent progresses in blue emitting sources make them available [17, 19]. We present here a top-down design methodology, fully validated by Eldo circuit simulations [20] and experimental measurements, which allows to predict and optimize, starting from the speed requirements and the technological parameters, the architecture and performances of the receiver. Our approach generalizes the one proposed in [21] to all inversion regimes. In addition our design strategy is based on the gm id methodology [22] and allows one to optimize the diode and the transimpedance in a simultaneous way. Thanks to this modeling and the low capacitance of thin-film integrated SOI photodiodes, we have optimized various monolithic optical front-end suitable for 1 to 10 Gb/s short distance communication or Blue DVD applications that show the potentials of 0.13μm Partially-Depleted (PD) SOI CMOS implementation in terms of gain, sensitivity, power consumption, area and noise. In section 2 (Optical Receivers Basics), the simple resistor system is first presented as well as its limitations. The transimpedance amplifier is then introduced and its basic theory and concepts such as transimpedance gain, bandwidth and stability are derived. Important parameters to compare transimpedance amplifiers are also discussed as well as architectures most often used in the high speed communication area. Then in section "Design of Multistage Transimpedance Amplifiers", we present our top-down methodology to design transimpedance amplifiers in the case where the voltage gain of the voltage amplifier used in the TIA is independent of the feedback resistor Rf. This is usually the case when the TIA bandwidth is not too close to the transistors frequency limit ft of a given technology and leads to a multi-stage approach. Our design procedure is then applied to the design of a 3 stages 1GHz bandwidth transimpedance amplifier in a 0.13 μm PD-SOI CMOS technology. Finally, in section "Single stage Transimpedance Amplifier Modeling", we present a top-down methodology to design transimpedance amplifiers when the voltage gain depends on Rf. This is the case for very high-speed singlestage transimpedance amplifiers. Our design procedure is then applied to the design of a single stage 10GHz bandwidth transimpedance amplifier in a 0.13 μm PD-SOI CMOS technology and to the design of a 1GHz bandwidth single stage TIA in a 0.5 μm FD-SOI CMOS technology

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    Low-Voltage Analog Circuit Design Using the Adaptively Biased Body-Driven Circuit Technique

    Get PDF
    The scaling of MOSFET dimensions and power supply voltage, in conjunction with an increase in system- and circuit-level performance requirements, are the most important factors driving the development of new technologies and design techniques for analog and mixed-signal integrated circuits. Though scaling has been a fact of life for analog circuit designers for many years, the approaching 1-V and sub-1-V power supplies, combined with applications that have increasingly divergent technology requirements, means that the analog and mixed-signal IC designs of the future will probably look quite different from those of the past. Foremost among the challenges that analog designers will face in highly scaled technologies are low power supply voltages, which limit dynamic range and even circuit functionality, and ultra-thin gate oxides, which give rise to significant levels of gate leakage current. The goal of this research is to develop novel analog design techniques which are commensurate with the challenges that designers will face in highly scaled CMOS technologies. To that end, a new and unique body-driven design technique called adaptive gate biasing has been developed. Adaptive gate biasing is a method for guaranteeing that MOSFETs in a body-driven simple current mirror, cascode current mirror, or regulated cascode current source are biased in saturation—independent of operating region, temperature, or supply voltage—and is an enabling technology for high-performance, low-voltage analog circuits. To prove the usefulness of the new design technique, a body-driven operational amplifier that heavily leverages adaptive gate biasing has been developed. Fabricated on a 3.3-V/0.35-μm partially depleted silicon-onv-insulator (PD-SOI) CMOS process, which has nMOS and pMOS threshold voltages of 0.65 V and 0.85 V, respectively, the body-driven amplifier displayed an open-loop gain of 88 dB, bandwidth of 9 MHz, and PSRR greater than 50 dB at 1-V power supply
    • …
    corecore