682 research outputs found

    Using minimal number of electrodes for emotion detection using noisy EEG data

    Get PDF
    Emotion is an important aspect in the interaction between humans. It is fundamental to human experience and rational decision-making. There is a great interest for detecting emotions automatically. A number of techniques have been employed for this purpose using channels such as voice and facial expressions. However, these channels are not very accurate because they can be affected by users\u27 intentions. Other techniques use physiological signals along with electroencephalography (EEG) for emotion detection. However, these approaches are not very practical for real time applications because they ask the participants to reduce any motion and facial muscle movement, reject EEG data contaminated with artifacts and rely on large number of electrodes. In this thesis, we propose an approach that analyzes highly contaminated EEG data produced from a new emotion elicitation technique. We also use a feature selection mechanism to extract features that are relevant to the emotion detection task based on neuroscience findings. We reached an average accuracy of 51% for joy emotion, 53% for anger, 58% for fear and 61% for sadness. We are also, applying our approach on smaller number of electrodes that ranges from 4 up to 25 electrodes and we reached an average classification accuracy of 33% for joy emotion, 38% for anger, 33% for fear and 37.5% for sadness using 4 or 6 electrodes only

    EEG-Based Empathic Safe Cobot

    Get PDF
    An empathic collaborative robot (cobot) was realized through the transmission of fear from a human agent to a robot agent. Such empathy was induced through an electroencephalographic (EEG) sensor worn by the human agent, thus realizing an empathic safe brain-computer interface (BCI). The empathic safe cobot reacts to the fear and in turn transmits it to the human agent, forming a social circle of empathy and safety. A first randomized, controlled experiment involved two groups of 50 healthy subjects (100 total subjects) to measure the EEG signal in the presence or absence of a frightening event. The second randomized, controlled experiment on two groups of 50 different healthy subjects (100 total subjects) exposed the subjects to comfortable and uncomfortable movements of a collaborative robot (cobot) while the subjects’ EEG signal was acquired. The result was that a spike in the subject’s EEG signal was observed in the presence of uncomfortable movement. The questionnaires were distributed to the subjects, and confirmed the results of the EEG signal measurement. In a controlled laboratory setting, all experiments were found to be statistically significant. In the first experiment, the peak EEG signal measured just after the activating event was greater than the resting EEG signal (p < 10−3). In the second experiment, the peak EEG signal measured just after the uncomfortable movement of the cobot was greater than the EEG signal measured under conditions of comfortable movement of the cobot (p < 10−3). In conclusion, within the isolated and constrained experimental environment, the results were satisfactory

    Time-Varying Spectral Analysis of a Single EEG Channel: Application in an Affective Protocol

    Get PDF
    Neural correlates of emotions have been widely investigated using noninvasive sensor modalities. These approaches are often characterized by a low level of usability and are not practical for real-life situations. The aim of this study is to show that a single EEG electrode placed in the central region of the scalp is able to discriminate emotional characterized events with respect to a baseline period. Emotional changes were induced using an imagery approach based on the recall of autobiographical events characterized by four basic emotions: "Happiness", "Fear", "Anger" and "Sadness". Data from 17 normal subjects were recorded on Cz position according to the International 10-20 System. After preprocessing and artifact detection phases, raw signals were analyzed through a time-variant adaptive autoregressive model to extract EEG characteristic spectral components. We considered 5 frequency bands, i.e. the classical EEG rhythms, namely the delta band (δ), [1-4] Hz, the theta band (θ), [4-6] Hz, the alpha band (α), [6-12] Hz, the beta band (β), [12-30] Hz, and the gamma band (γ), [30-50] Hz. The relative powers of the EEG rhythms were used as features to compare the experimental conditions. Our results show statistically significant differences when comparing the power content in the gamma band of baseline events versus emotionally characterized events. Particularly, we found a significant increase in gamma band relative power in 3 out of 4 emotionally characterized events, i.e. “Happiness” “Sadness” and “Anger". In agreement with previous studies, our findings confirm the presence of a possible correlation between broader high frequency cortical activation and affective processing of the brain. The present study shows that the use of a single EEG electrode represents a possible advantageous premise for the assessment of the emotional state with a minimally invasive set-up

    EMOTION RECOGNITION BASED ON VARIOUS PHYSIOLOGICAL SIGNALS - A REVIEW

    Get PDF
    Emotion recognition is one of the biggest challenges in human-human and human-computer interaction. There are various approaches to recognize emotions like facial expression, audio signals, body poses, and gestures etc. Physiological signals play vital role in emotion recognition as they are not controllable and are of immediate response type. In this paper, we discuss the research done on emotion recognition using skin conductance, skin temperature, electrocardiogram (ECG), electromyography (EMG), and electroencephalogram (EEG) signals. Altogether, the same methodology has been adopted for emotion recognition techniques based upon various physiological signals. After survey, it is understood that none of these methods are fully efficient standalone but the efficiency can be improved by using combination of physiological signals. The study of this paper provides an insight on the current state of research and challenges faced during emotion recognition using physiological signals, so that research can be advanced for better recognition

    Affective Brain-Computer Interfaces

    Get PDF

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions
    corecore