42,980 research outputs found

    Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

    Full text link
    Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.Comment: Updated version, draft of accepted IJCAI2020 Survey Pape

    Symbolic framework for linear active circuits based on port equivalence using limit variables

    Get PDF
    Published versio

    Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length

    Full text link
    In this paper, we deal with time-invariant spatially coupled low-density parity-check convolutional codes (SC-LDPC-CCs). Classic design approaches usually start from quasi-cyclic low-density parity-check (QC-LDPC) block codes and exploit suitable unwrapping procedures to obtain SC-LDPC-CCs. We show that the direct design of the SC-LDPC-CCs syndrome former matrix or, equivalently, the symbolic parity-check matrix, leads to codes with smaller syndrome former constraint lengths with respect to the best solutions available in the literature. We provide theoretical lower bounds on the syndrome former constraint length for the most relevant families of SC-LDPC-CCs, under constraints on the minimum length of cycles in their Tanner graphs. We also propose new code design techniques that approach or achieve such theoretical limits.Comment: 30 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Approximation of dynamical systems using S-systems theory : application to biological systems

    Full text link
    In this paper we propose a new symbolic-numeric algorithm to find positive equilibria of a n-dimensional dynamical system. This algorithm implies a symbolic manipulation of ODE in order to give a local approximation of differential equations with power-law dynamics (S-systems). A numerical calculus is then needed to converge towards an equilibrium, giving at the same time a S-system approximating the initial system around this equilibrium. This algorithm is applied to a real biological example in 14 dimensions which is a subsystem of a metabolic pathway in Arabidopsis Thaliana

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice
    corecore