3,763 research outputs found

    Neural Network Matrix Factorization

    Full text link
    Data often comes in the form of an array or matrix. Matrix factorization techniques attempt to recover missing or corrupted entries by assuming that the matrix can be written as the product of two low-rank matrices. In other words, matrix factorization approximates the entries of the matrix by a simple, fixed function---namely, the inner product---acting on the latent feature vectors for the corresponding row and column. Here we consider replacing the inner product by an arbitrary function that we learn from the data at the same time as we learn the latent feature vectors. In particular, we replace the inner product by a multi-layer feed-forward neural network, and learn by alternating between optimizing the network for fixed latent features, and optimizing the latent features for a fixed network. The resulting approach---which we call neural network matrix factorization or NNMF, for short---dominates standard low-rank techniques on a suite of benchmark but is dominated by some recent proposals that take advantage of the graph features. Given the vast range of architectures, activation functions, regularizers, and optimization techniques that could be used within the NNMF framework, it seems likely the true potential of the approach has yet to be reached.Comment: Minor modifications to notation. Added additional experiments and discussion. 7 pages, 2 table

    A Survey on Artificial Intelligence and Data Mining for MOOCs

    Full text link
    Massive Open Online Courses (MOOCs) have gained tremendous popularity in the last few years. Thanks to MOOCs, millions of learners from all over the world have taken thousands of high-quality courses for free. Putting together an excellent MOOC ecosystem is a multidisciplinary endeavour that requires contributions from many different fields. Artificial intelligence (AI) and data mining (DM) are two such fields that have played a significant role in making MOOCs what they are today. By exploiting the vast amount of data generated by learners engaging in MOOCs, DM improves our understanding of the MOOC ecosystem and enables MOOC practitioners to deliver better courses. Similarly, AI, supported by DM, can greatly improve student experience and learning outcomes. In this survey paper, we first review the state-of-the-art artificial intelligence and data mining research applied to MOOCs, emphasising the use of AI and DM tools and techniques to improve student engagement, learning outcomes, and our understanding of the MOOC ecosystem. We then offer an overview of key trends and important research to carry out in the fields of AI and DM so that MOOCs can reach their full potential.Comment: Working Pape

    Next Steps for Human-Centered Generative AI: A Technical Perspective

    Full text link
    Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI) from a technical perspective. We contribute a roadmap that lays out future directions of Generative AI spanning three levels: Aligning with human values; Accommodating humans' expression of intents; and Augmenting humans' abilities in a collaborative workflow. This roadmap intends to draw interdisciplinary research teams to a comprehensive list of emergent ideas in HGAI, identifying their interested topics while maintaining a coherent big picture of the future work landscape

    Cogniculture: Towards a Better Human-Machine Co-evolution

    Full text link
    Research in Artificial Intelligence is breaking technology barriers every day. New algorithms and high performance computing are making things possible which we could only have imagined earlier. Though the enhancements in AI are making life easier for human beings day by day, there is constant fear that AI based systems will pose a threat to humanity. People in AI community have diverse set of opinions regarding the pros and cons of AI mimicking human behavior. Instead of worrying about AI advancements, we propose a novel idea of cognitive agents, including both human and machines, living together in a complex adaptive ecosystem, collaborating on human computation for producing essential social goods while promoting sustenance, survival and evolution of the agents' life cycle. We highlight several research challenges and technology barriers in achieving this goal. We propose a governance mechanism around this ecosystem to ensure ethical behaviors of all cognitive agents. Along with a novel set of use-cases of Cogniculture, we discuss the road map ahead for this journey

    Sensemaking on the Pragmatic Web: A Hypermedia Discourse Perspective

    Get PDF
    The complexity of the dilemmas we face on an organizational, societal and global scale forces us into sensemaking activity. We need tools for expressing and contesting perspectives flexible enough for real time use in meetings, structured enough to help manage longer term memory, and powerful enough to filter the complexity of extended deliberation and debate on an organizational or global scale. This has been the motivation for a programme of basic and applied action research into Hypermedia Discourse, which draws on research in hypertext, information visualization, argumentation, modelling, and meeting facilitation. This paper proposes that this strand of work shares a key principle behind the Pragmatic Web concept, namely, the need to take seriously diverse perspectives and the processes of meaning negotiation. Moreover, it is argued that the hypermedia discourse tools described instantiate this principle in practical tools which permit end-user control over modelling approaches in the absence of consensus

    Towards In-Transit Analytics for Industry 4.0

    Full text link
    Industry 4.0, or Digital Manufacturing, is a vision of inter-connected services to facilitate innovation in the manufacturing sector. A fundamental requirement of innovation is the ability to be able to visualise manufacturing data, in order to discover new insight for increased competitive advantage. This article describes the enabling technologies that facilitate In-Transit Analytics, which is a necessary precursor for Industrial Internet of Things (IIoT) visualisation.Comment: 8 pages, 10th IEEE International Conference on Internet of Things (iThings-2017), Exeter, UK, 201

    The Future of Spreadsheets in the Big Data Era

    Full text link
    The humble spreadsheet is the most widely used data storage, manipulation and modelling tool. Its ubiquity over the past 30 years has seen its successful application in every area of life. Surprisingly the spreadsheet has remained fundamentally unchanged over the past three decades. As spreadsheet technology enters its 4th decade a number of drivers of change are beginning to impact upon the spreadsheet. The rise of Big Data, increased end-user computing and mobile computing will undoubtedly increasingly shape the evolution and use of spreadsheet technology. To explore the future of spreadsheet technology a workshop was convened with the aim of "bringing together academia and industry to examine the future direction of spreadsheet technology and the consequences for users". This paper records the views of the participants on the reasons for the success of the spreadsheet, the trends driving change and the likely directions of change for the spreadsheet. We then set out key directions for further research in the evolution and use of spreadsheets. Finally we look at the implications of these trends for the end users who after all are the reason for the remarkable success of the spreadsheet.Comment: 13 Pages, 1 Tabl

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Distributed High Accuracy Peer-to-Peer Localization in Mobile Multipath Environments

    Full text link
    In this paper we consider the problem of high accuracy localization of mobile nodes in a multipath-rich environment where sub-meter accuracies are required. We employ a peer to peer framework where the vehicles/nodes can get pairwise multipath-degraded ranging estimates in local neighborhoods together with a fixed number of anchor nodes. The challenge is to overcome the multipath-barrier with redundancy in order to provide the desired accuracies especially under severe multipath conditions when the fraction of received signals corrupted by multipath is dominating. We invoke a message passing analytical framework based on particle filtering and reveal its high accuracy localization promise through simulations.Comment: 5 pages, 5 figures, Accepted at IEEE Globecom 2010, Miami, F

    BugListener: Identifying and Synthesizing Bug Reports from Collaborative Live Chats

    Full text link
    In community-based software development, developers frequently rely on live-chatting to discuss emergent bugs/errors they encounter in daily development tasks. However, it remains a challenging task to accurately record such knowledge due to the noisy nature of interleaved dialogs in live chat data. In this paper, we first formulate the task of identifying and synthesizing bug reports from community live chats, and propose a novel approach, named BugListener, to address the challenges. Specifically, BugListener automates three sub-tasks: 1) Disentangle the dialogs from massive chat logs by using a Feed-Forward neural network; 2) Identify the bug-report dialogs from separated dialogs by modeling the original dialog to the graph-structured dialog and leveraging the graph neural network to learn the contextual information; 3) Synthesize the bug reports by utilizing the TextCNN model and Transfer Learning network to classify the sentences into three groups: observed behaviors (OB), expected behaviors (EB), and steps to reproduce the bug (SR). BugListener is evaluated on six open source projects. The results show that: for bug report identification, BugListener achieves the average F1 of 74.21%, improving the best baseline by 10.37%; and for bug report synthesis task, BugListener could classify the OB, EB, and SR sentences with the F1 of 67.37%, 87.14%, and 65.03%, improving the best baselines by 7.21%, 7.38%, 5.30%, respectively. A human evaluation also confirms the effectiveness of BugListener in generating relevant and accurate bug reports. These demonstrate the significant potential of applying BugListener in community-based software development, for promoting bug discovery and quality improvement
    • …
    corecore