1,058 research outputs found

    Using low-level reader data to detect false-positive RFID tag reads

    Full text link

    Reasoning about uncertainty in location identification with RFID

    Get PDF
    Radio Frequency Identification (RFID) is set to revolutionise industrial control as it holds the potential to simplify and make more robust the tracking of parts or part carriers through manufacture, storage, distribution and ultimately the supply chain. RFID control is based on unique RFID transponder tags being attached to parts and used to identify the part as it moves through the factory or warehouse. Although RFID dramatically simplifies the process of tracking parts, there are certain situations that can lead to uncertainty about the true location of the part. This paper looks at two such situations: a robotic storage stack and a medicine cabinet. Both cases of uncertainty are successfully resolved by using a statistical filter. This work may lend itself to extensions and generalisations using Partially Observable Markov Decision Process (POMDP) models

    A Review on Missing Tags Detection Approaches in RFID System

    Get PDF
    Radio Frequency Identification (RFID) system can provides automatic detection on very large number of tagged objects within short time. With this advantage, it is been using in many areas especially in the supply chain management, manufacturing and many others. It has the ability to track individual object all away from the manufacturing factory until it reach the retailer store. However, due to its nature that depends on radio signal to do the detection, reading on tagged objects can be missing due to the signal lost. The signal lost can be caused by weak signal, interference and unknown source. Missing tag detection in RFID system is truly significant problem, because it makes system reporting becoming useless, due to the misleading information generated from the inaccurate readings. The missing detection also can invoke fake alarm on theft, or object left undetected and unattended for some period. This paper provides review regarding this issue and compares some of the proposed approaches including Window Sub-range Transition Detection (WSTD), Efficient Missing-Tag Detection Protocol (EMD) and Multi-hashing based Missing Tag Identification (MMTI) protocol. Based on the reviews it will give insight on the current challenges and open up for a new solution in solving the problem of missing tag detection

    The design and development of multi-agent based RFID middleware system for data and devices management

    Get PDF
    Thesis (D. Tech. (Electrical Engineering)) - Central University of technology, Free State, 2012Radio frequency identification technology (RFID) has emerged as a key technology for automatic identification and promises to revolutionize business processes. While RFID technology adoption is improving rapidly, reliable and widespread deployment of this technology still faces many significant challenges. The key deployment challenges include how to use the simple, unreliable raw data generated by RFID deployments to make business decisions; and how to manage a large number of deployed RFID devices. In this thesis, a multi-agent based RFID middleware which addresses some of the RFID data and device management challenges was developed. The middleware developed abstracts the auto-identification applications from physical RFID device specific details and provides necessary services such as device management, data cleaning, event generation, query capabilities and event persistence. The use of software agent technology offers a more scalable and distributed system architecture for the proposed middleware. As part of a multi-agent system, application-independent domain ontology for RFID devices was developed. This ontology can be used or extended in any application interested with RFID domain ontology. In order to address the event processing tasks within the proposed middleware system, a temporal-based RFID data model which considers both applications’ temporal and spatial granules in the data model itself for efficient event processing was developed. The developed data model extends the conventional Entity-Relationship constructs by adding a time attribute to the model. By maintaining the history of events and state changes, the data model captures the fundamental RFID application logic within the data model. Hence, this new data model supports efficient generation of application level events, updating, querying and analysis of both recent and historical events. As part of the RFID middleware, an adaptive sliding-window based data cleaning scheme for reducing missed readings from RFID data streams (called WSTD) was also developed. The WSTD scheme models the unreliability of the RFID readings by viewing RFID streams as a statistical sample of tags in the physical world, and exploits techniques grounded in sampling theory to drive its cleaning processes. The WSTD scheme is capable of efficiently coping with both environmental variations and tag dynamics by automatically and continuously adapting its cleaning window size, based on observed readings

    The Challenges and Issues Facing the Deployment of RFID Technology

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    The SARFID technique for discriminating tagged items moving through a UHF-RFID gate

    Get PDF
    The discrimination of tagged items moving along a conveyor belt from other tagged items that are present in the scenario is investigated, when a UHF-RFID gate is installed at a conveyor section. Indeed, tagged items that are static or randomly moving in the scenario (nomad tags) around the reader antenna could be detected even if they are not on the conveyor (false positive readings). The classification procedure here proposed exploits the SARFID phase-based technique used to localize tags on a conveyor belt, which takes advantage of the fact that the tagged items move along a conveyor, whose path and instantaneous speed are both known. The latter can be implemented with only a firmware upgrade, in any conveyor belt scenario already equipped with an RFID system, without any modification of the system infrastructure and additional (reference tags/multiple antennas) or ad hoc hardware. From experimental results in a real scenario, the discrimination between moving tags from static/nomad tags can be obtained with an overall accuracy greater than 99.9%, by employing only one reader antenna

    RFID Data Management

    Get PDF

    Towards Digital Transformation in Fashion Retailing: A Design-Oriented IS Research Study of Automated Checkout Systems

    Get PDF
    Automated checkout systems promise greater sales due to an improved customer experience and cost savings because less store personnel is needed. The present design-oriented IS research study is concerned with an automated checkout solution in fashion retail stores. The implementation of such a cyberphysical system in established retail environments is challenging as architectural constraints, well-established customer processes, and customer expectations regarding privacy and convenience impose limits on system design. To overcome these challenges, the authors design an IT artifact that leverages an RFID sensor infrastructure and software components (data processing and prediction routines) to jointly address the central problems of detecting purchases in a reliable and timely fashion and assigning these purchases to individual shopping baskets. The system is implemented and evaluated in a research laboratory under real-world conditions. The evaluation indicates that shopping baskets can indeed be detected reliably (precision and recall rates greater than 99%) and in an expeditious manner (median detection time of 1.03 s). Moreover, purchase assignment reliability is 100% for most standard scenarios but falls to 42% in the most challenging scenario

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui
    • …
    corecore