7,631 research outputs found

    Distributed multi-agent algorithm for residential energy management in smart grids

    Get PDF
    Distributed renewable power generators, such as solar cells and wind turbines are difficult to predict, making the demand-supply problem more complex than in the traditional energy production scenario. They also introduce bidirectional energy flows in the low-voltage power grid, possibly causing voltage violations and grid instabilities. In this article we describe a distributed algorithm for residential energy management in smart power grids. This algorithm consists of a market-oriented multi-agent system using virtual energy prices, levels of renewable energy in the real-time production mix, and historical price information, to achieve a shifting of loads to periods with a high production of renewable energy. Evaluations in our smart grid simulator for three scenarios show that the designed algorithm is capable of improving the self consumption of renewable energy in a residential area and reducing the average and peak loads for externally supplied power

    Multi objective optimization in charge management of micro grid based multistory carpark

    Get PDF
    Distributed power supply with the use of renewable energy sources and intelligent energy flow management has undoubtedly become one of the pressing trends in modern power engineering, which also inspired researchers from other fields to contribute to the topic. There are several kinds of micro grid platforms, each facing its own challenges and thus making the problem purely multi objective. In this paper, an evolutionary driven algorithm is applied and evaluated on a real platform represented by a private multistory carpark equipped with photovoltaic solar panels and several battery packs. The algorithm works as a core of an adaptive charge management system based on predicted conditions represented by estimated electric load and production in the future hours. The outcome of the paper is a comparison of the optimized and unoptimized charge management on three different battery setups proving that optimization may often outperform a battery setup with larger capacity in several criteria.Web of Science117art. no. 179

    Designing a sustainable university recharge area for electric vehicles: Technical and economic analysis

    Get PDF
    This article addresses the technical and economic challenges regarding the design of a "green" recharge area for electric vehicles at the University of Palermo in order to reduce costs and pollution connected to the charging process. Based on the behaviour of the student population, the electrical load is identified and two possible solutions are evaluated to manage the peak load: an orientation of the panels increasing the power at defined time and the use of a storage system. The main strength and weakness points of two systems are investigated by taking into account the Levelized Cost of Energy (LCOE), which reaches 75.3 \u20ac/MWh for the orientation of panel and 103 \u20ac/MWh for the storage system. Furthermore, the cost of the topologies of power plant and the cost of energy are discussed in depth

    Optimizing plug-in electric vehicle charging in interaction with a small office building

    Get PDF
    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capaci-ty of 864 kWh. With the benefit-sharing mechanism proposed here and idea-lized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. --Battery storage,building management systems,dispersed storage and generation,electric vehicles,load management,microgrid,optimization methods,power system economics,road vehicle electric propulsion

    Hourly Simulation of Energy Community with Photovoltaic Generator and Electric Vehicle

    Get PDF
    Europe has set the ambitious goal to become the first carbon-neutral continent by 2050. Therefore, it has undertaken several initiatives to promote the energy transition, including the active participation of citizens in the energy sector. In this context, recent European directives introduced the concept of energy community, whose members can consume, share, and store energy locally produced. This work proposes an energy and economic simulation of a renewable energy community powered by a 19.2 kWp photovoltaic system in the province of Cuneo, in Piedmont (Italy). The community consists of a prosumer, which owns the photovoltaic system and a charging station for electric vehicles, and other 17 energy users. Suitable indicators to assess the energy performance of the community (self-consumption and self-sufficiency) were evaluated starting from the estimated production and consumption power profiles. Then, an economic simulation was carried out to assess the economic return on the investment for the member who bore the initial costs and the annual economic savings for the others

    Designing Innovative PV-powered applications for the urban environment:A design-driven multidisciplinary approach

    Get PDF
    The transport and residential sectors are two of the key areas where the transition to a fully renewable energy supply needs to take place in order to limit the emission of CO2 and other greenhouse gases. This thesis therefore explores how a multidisciplinary design-driven research approach can be used to develop technically functional, financially feasible and low-emissions PV-powered applications for these two sectors which are more likely to be adopted by end users. A feasibility model was first developed to simulate the operation of a grid-connected solar EV charging station with energy storage, showing that the longer an EV is driven the more affordable solar-powered charging becomes and a higher environmental dividend is achieved. A subsequent study for eight locations around the world indicates that with the right combination of battery and PV system sizes this charging system can be a feasible solution from a technical, financial and environmental perspective in comparison with both a gasoline-fuelled vehicle and a grid-charged EV. A conceptual design study resulted in the development of eleven innovative solar mobility applications, ranging from mobile EV charging stations to solar-powered bicycles and public transportation. Energy balance calculations for two sample locations show that the extent to which the PV electricity produced by these systems will meet vehicle demand will vary significantly depending on the type of application. Results from a user study aimed at evaluating the potential adoption of four existing solar-powered mobility applications found that despite having a mostly positive impression, respondents’ likelihood to adopt these applications in the near future was relatively low. However, a vast majority of respondents willing to pay more for an EV with integrated solar cells indicates that these applications are perceived as having an added value. Finally, the performance of home energy management system (HEMS) prototypes was evaluated using both simulation and user tests. This dual approach proved useful for quickly and accurately validating the operation of these products, but conflicting results during user tests highlight the complexity of user behaviour around household energy consumption and the importance of carefully designing HEMS to ensure they achieve their intended purpose

    On the implementation of a microgrid project with renewable distributed generation

    Get PDF
    This paper describes the on-going implementation of a microgrid project with renewable distributed generation under the context of an initiative with demonstration purposes in an university campus. In the actual context of the electrical energy demand increase and limited conventional resources, along with the consciousness of the climate changes and the need to invest in clean energies, microgrids allows the integration of dispersed energy sources, mainly renewable, which make them cost effective, providing a viable alternative to centralized production, transmission and distribution system for remote community areas. The design concept of the microgrid and a description of the base equipment and energy sources already integrated are presented. From the on-going projects to be integrated on the microgrid, it is presented the Grid-to- Vehicle and Vehicle-to-Grid concept, which will provide a second energy storage element using the battery of an electric vehicle. To accomplish this objective, a bi-directional power converter is being developed and simulation results of its power structure and control are presented

    Analysis of the operation of a microgrid with renewable distributed generation

    Get PDF
    This article reports the ongoing research on the performance assessment of an experimental microgrid which integrates various renewable energy sources. The microgrid is based on a modular commercial solution, up to a rated power of 5 kW, integrating storage devices, a backup diesel generator and various renewable energy sources and also distributed energy sources developed under ongoing R&D projects, such as the integration of a pico hydropower plant with an interface able to perform power factor compensation of the microgrid, which is introduced briefly. The performance assessment of this microgrid is conducted through a characterization of different operational states and also a preliminary energy balance of the microgrid during a time span of 4 days.The authors would like to acknowledge the financial support provided by the European Regional Development Fund, under the Interreg Project 0128_PROBIOENER_2_E.info:eu-repo/semantics/publishedVersio

    SEEV4City INTERIM 'Summary of the State of the Art' report

    Get PDF
    This report summarizes the state-of-the-art on plug-in and full battery electric vehicles (EVs), smart charging and vehicle to grid (V2G) charging. This is in relation to the technology development, the role of EVs in CO2 reduction, their impact on the energy system as a whole, plus potential business models, services and policies to further promote the use of EV smart charging and V2G, relevant to the SEEV4-City project
    corecore