5,915 research outputs found

    Multigenome DNA sequence conservation identifies Hox cis-regulatory elements

    Get PDF
    To learn how well ungapped sequence comparisons of multiple species can predict cis-regulatory elements in Caenorhabditis elegans, we made such predictions across the large, complex ceh-13/lin-39 locus and tested them transgenically. We also examined how prediction quality varied with different genomes and parameters in our comparisons. Specifically, we sequenced ∼0.5% of the C. brenneri and C. sp. 3 PS1010 genomes, and compared five Caenorhabditis genomes (C. elegans, C. briggsae, C. brenneri, C. remanei, and C. sp. 3 PS1010) to find regulatory elements in 22.8 kb of noncoding sequence from the ceh-13/lin-39 Hox subcluster. We developed the MUSSA program to find ungapped DNA sequences with N-way transitive conservation, applied it to the ceh-13/lin-39 locus, and transgenically assayed 21 regions with both high and low degrees of conservation. This identified 10 functional regulatory elements whose activities matched known ceh-13/lin-39 expression, with 100% specificity and a 77% recovery rate. One element was so well conserved that a similar mouse Hox cluster sequence recapitulated the native nematode expression pattern when tested in worms. Our findings suggest that ungapped sequence comparisons can predict regulatory elements genome-wide

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data

    Transcription factor site dependencies in human, mouse and rat genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that transcription factors frequently act together to regulate gene expression in eukaryotes. In this paper we describe a computational analysis of transcription factor site dependencies in human, mouse and rat genomes.</p> <p>Results</p> <p>Our approach for quantifying tendencies of transcription factor binding sites to co-occur is based on a binding site scoring function which incorporates dependencies between positions, the use of information about the structural class of each transcription factor (major/minor groove binder), and also considered the possible implications of varying GC content of the sequences. Significant tendencies (dependencies) have been detected by non-parametric statistical methodology (permutation tests). Evaluation of obtained results has been performed in several ways: reports from literature (many of the significant dependencies between transcription factors have previously been confirmed experimentally); dependencies between transcription factors are not biased due to similarities in their DNA-binding sites; the number of dependent transcription factors that belong to the same functional and structural class is significantly higher than would be expected by chance; supporting evidence from GO clustering of targeting genes. Based on dependencies between two transcription factor binding sites (second-order dependencies), it is possible to construct higher-order dependencies (networks). Moreover results about transcription factor binding sites dependencies can be used for prediction of groups of dependent transcription factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups of dependent transcription factors binding sites are available on the Internet.</p> <p>Conclusion</p> <p>We show that the computational analysis of transcription factor site dependencies is a valuable complement to experimental approaches for discovering transcription regulatory interactions and networks. Scanning promoter sequences with dependent groups of transcription factor binding sites improve the quality of transcription factor predictions.</p

    PromoterPlot: a graphical display of promoter similarities by pattern recognition

    Get PDF
    PromoterPlot () is a web-based tool for simplifying the display and processing of transcription factor searches using either the commercial or free TransFac distributions. The input sequence is a TransFac search (public version) or FASTA/Affymetrix IDs (local install). It uses an intuitive pattern recognition algorithm for finding similarities between groups of promoters by dividing transcription factor predictions into conserved triplet models. To minimize the number of false-positive models, it can optionally exclude factors that are known to be unexpressed or inactive in the cells being studied based on microarray or proteomic expression data. The program will also estimate the likelihood of finding a pattern by chance based on the frequency observed in a control set of mammalian promoters we obtained from Genomatix. The results are stored as an interactive SVG web page on our server

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data

    STAMP: a web tool for exploring DNA-binding motif similarities

    Get PDF
    STAMP is a newly developed web server that is designed to support the study of DNA-binding motifs. STAMP may be used to query motifs against databases of known motifs; the software aligns input motifs against the chosen database (or alternatively against a user-provided dataset), and lists of the highest-scoring matches are returned. Such similarity-search functionality is expected to facilitate the identification of transcription factors that potentially interact with newly discovered motifs. STAMP also automatically builds multiple alignments, familial binding profiles and similarity trees when more than one motif is inputted. These functions are expected to enable evolutionary studies on sets of related motifs and fixed-order regulatory modules, as well as illustrating similarities and redundancies within the input motif collection. STAMP is a highly flexible alignment platform, allowing users to ‘mix-and-match’ between various implemented comparison metrics, alignment methods (local or global, gapped or ungapped), multiple alignment strategies and tree-building methods. Motifs may be inputted as frequency matrices (in many of the commonly used formats), consensus sequences, or alignments of known binding sites. STAMP also directly accepts the output files from 12 supported motif-finders, enabling quick interpretation of motif-discovery analyses. STAMP is available at http://www.benoslab.pitt.edu/stam

    Discovering Conserved cis-Regulatory Elements That Regulate Expression in Caenorhabditis elegans

    Get PDF
    The aim of this dissertation is two-fold:: 1) To catalog all cis-regulatory elements within the intergenic and intronic regions surrounding every gene in C.elegans: i.e. the regulome) and: 2) to determine which cis-regulatory elements are associated with expression under specific conditions. We initially use PhyloNet to predict conserved motifs with instances in about half of the protein-coding genes. This initial first step was valuable as it recovered some known elements and cis-regulatory modules. Yet the results had a lot of redundant motifs and sites, and the approach was not efficiently scalable to the entire regulome of C. elegans or other higher-order eukaryotes. Magma: Multiple Aligner of Genomic Multiple Alignments) overcomes these shortcomings by using efficient clustering and memory management algorithms. Additionally, it implements a fast greedy set-cover solution to significantly reduce redundant motifs. These differences make Magma ~70 times faster than PhyloNet and Magma-based predictions occur near ~99% of all C. elegans protein-coding genes. Furthermore, we show tractable scaling for higher-order eukaryotes with larger regulomes. Finally, we demonstrate that a Magma-predicted motif, which represents the binding specificity for HLH-30, plays a critical role in the host-defense to pathogenic infections. This novel finding shows that hlh-30(-) animals are more susceptible to S. aureus and P. aeruginosa than their wild type counterparts

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore