15 research outputs found

    Solving the order batching and sequencing problem with multiple pickers: A grouped genetic algorithm

    Get PDF
    This paper introduces a grouped genetic algorithm (GGA) to solve the order batching and sequencing problem with multiple pickers (OBSPMP) with the objective of minimizing total completion time. To the best of our knowledge, for the first time, an OBSPMP is solved by means of GGA considering picking devices with heterogeneous load capacity. For this, an encoding scheme is proposed to represent in a chromosome the orders assigned to batches, and batches assigned to picking devices. Likewise, the operators of the proposed algorithm are adapted to the specific requirements of the OBSPMP. Computational experiments show that the GGA performs much better than six order batching and sequencing heuristics, leading to function objective savings of 18.3% on average. As a conclusion, the proposed algorithm provides feasible solutions for the operations planning in warehouses and distribution centers, improving margins by reducing operating time for order pickers, and improving customer service by reducing picking service times

    Order Picking Problem: A Model for the Joint Optimisation of Order Batching, Batch Assignment Sequencing, and Picking Routing

    Get PDF
    Background: Order picking is a critical activity in end-product warehouses, particularly using the picker-to-part system, entail substantial manual labor, representing approximately 60% of warehouse work. Methods: This study develops a new linear model to perform batching, which allows for defining, assigning, and sequencing batches and determining the best routing strategy. Its goal is to minimise the completion time and the weighted sum of tardiness and earliness of orders. We developed a second linear model without the constraints related to the picking routing to reduce complexity. This model searches for the best routing using the closest neighbour approach. As both models were too complex to test, the earliest due date constructive heuristic algorithm was developed. To improve the solution, we implemented various algorithms, from multi-start with random ordering to more complex like iterated local search. Results: The proposed models were tested on a real case study where the picking time was reduced by 57% compared to single-order strategy. Conclusions: The results showed that the iterated local search multiple perturbation algorithms could successfully identify the minimum solution and significantly improve the solution initially obtained with the heuristic earliest due date algorithm

    Graph reduction for the planar Travelling Salesman Problem:An application in order picking

    Get PDF

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Optimization of storage and picking systems in warehouses

    Get PDF
    La croissance du commerce électronique exige une hausse des performances des systèmes d'entreposage, qui sont maintenant repensés pour faire face à un volume massif de demandes à être satisfait le plus rapidement possible. Le système manuel et le système à robots mobile (SRM) sont parmi les plus utilisés pour ces activités. Le premier est un système centré sur l'humain pour réaliser des opérations complexes que les robots actuels ne peuvent pas effectuer. Cependant, les nouvelles générations de robots autonomes mènent à un remplacement progressif par le dernier pour augmenter la productivité. Quel que soit le système utilisé, plusieurs problèmes interdépendants doivent être résolus pour avoir des processus de stockage et de prélèvement efficaces. Les problèmes de stockage concernent les décisions d'où stocker les produits dans l'entrepôt. Les problèmes de prélèvement incluent le regroupement des commandes à exécuter ensemble et les itinéraires que les cueilleurs et les robots doivent suivre pour récupérer les produits demandés. Dans le système manuel, ces problèmes sont traditionnellement résolus à l'aide de politiques simples que les préparateurs peuvent facilement suivre. Malgré l'utilisation de robots, la même stratégie de solution est répliquée aux problèmes équivalents trouvés dans le SRM. Dans cette recherche, nous étudions les problèmes de stockage et de prélèvement rencontrés lors de la conception du système manuel et du SRM. Nous développons des outils d'optimisation pour aider à la prise de décision pour mettre en place leurs processus, en améliorant les mesures de performance typiques de ces systèmes. Certains problèmes traditionnels sont résolus avec des techniques améliorées, tandis que d'autres sont intégrés pour être résolus ensemble au lieu d'optimiser chaque sous-système de manière indépendante. Nous considérons d'abord un système manuel avec un ensemble connu de commandes et intégrons les décisions de stockage et de routage. Le problème intégré et certaines variantes tenant compte des politiques de routage communes sont modélisés mathématiquement. Une métaheuristique générale de recherche de voisinage variable est présentée pour traiter des instances de taille réelle. Des expériences attestent de l'efficience de la métaheuristique proposée par rapport aux modèles exacts et aux politiques de stockage communes. Lorsque les demandes futures sont incertaines, il est courant d'utiliser une stratégie de zonage qui divise la zone de stockage en zones et attribue les produits les plus demandés aux meilleures zones. Les tailles des zones sont à déterminer. Généralement, des dimensions arbitraires sont choisies, mais elles ignorent les caractéristiques de l'entrepôt et des demandes. Nous abordons le problème de dimensionnement des zones pour déterminer quels facteurs sont pertinents pour choisir de meilleures tailles de zone. Les données générées à partir de simulations exhaustives sont utilisées pour trainer quatre modèles de régression d'apprentissage automatique - moindres carrés ordinaire, arbre de régression, forêt aléatoire et perceptron multicouche - afin de prédire les dimensions optimales des zones en fonction de l'ensemble de facteurs pertinents identifiés. Nous montrons que tous les modèles entraînés suggèrent des dimensions sur mesure des zones qui performent meilleur que les dimensions arbitraires couramment utilisées. Une autre approche pour résoudre les problèmes de stockage pour le système manuel et pour le SRM considère les corrélations entre les produits. L'idée est que les produits régulièrement demandés ensemble doivent être stockés près pour réduire les coûts de routage. Cette politique de stockage peut être modélisée comme une variante du problème d'affectation quadratique (PAQ). Le PAQ est un problème combinatoire traditionnel et l'un des plus difficiles à résoudre. Nous examinons les variantes les plus connues du PAQ et développons une puissante métaheuristique itérative de recherche tabou mémétique en parallèle capable de les résoudre. La métaheuristique proposée s'avère être parmi les plus performantes pour le PAQ et surpasse considérablement l'état de l'art pour ses variantes. Les SRM permettent de repositionner facilement les pods d'inventaire pendant les opérations, ce qui peut conduire à un processus de prélèvement plus économe en énergie. Nous intégrons les décisions de repositionnement des pods à l'attribution des commandes et à la sélection des pods à l'aide d'une stratégie de prélèvement par vague. Les pods sont réorganisés en tenant compte du moment et de l'endroit où ils devraient être demandés au futur. Nous résolvons ce problème en utilisant la programmation stochastique en tenant compte de l'incertitude sur les demandes futures et suggérons une matheuristique de recherche locale pour résoudre des instances de taille réelle. Nous montrons que notre schéma d'approximation moyenne de l'échantillon est efficace pour simuler les demandes futures puisque nos méthodes améliorent les solutions trouvées lorsque les vagues sont planifiées sans tenir compte de l'avenir. Cette thèse est structurée comme suit. Après un chapitre d'introduction, nous présentons une revue de la littérature sur le système manuel et le SRM, et les décisions communes prises pour mettre en place leurs processus de stockage et de prélèvement. Les quatre chapitres suivants détaillent les études pour le problème de stockage et de routage intégré, le problème de dimensionnement des zones, le PAQ et le problème de repositionnement de pod. Nos conclusions sont résumées dans le dernier chapitre.The rising of e-commerce is demanding an increase in the performance of warehousing systems, which are being redesigned to deal with a mass volume of demands to be fulfilled as fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are among the most commonly used for these activities. The former is a human-centered system that handles complex operations that current robots cannot perform. However, newer generations of autonomous robots are leading to a gradual replacement by the latter to increase productivity. Regardless of the system used, several interdependent problems have to be solved to have efficient storage and picking processes. Storage problems concern decisions on where to store products within the warehouse. Picking problems include the batching of orders to be fulfilled together and the routes the pickers and robots should follow to retrieve the products demanded. In the manual system, these problems are traditionally solved using simple policies that pickers can easily follow. Despite using robots, the same solution strategy is being replicated to the equivalent problems found in the RMFS. In this research, we investigate storage and picking problems faced when designing manual and RMFS warehouses. We develop optimization tools to help in the decision-making process to set up their processes and improve typical performance measures considered in these systems. Some classic problems are solved with improved techniques, while others are integrated to be solved together instead of optimizing each subsystem sequentially. We first consider a manual system with a known set of orders and integrate storage and routing decisions. The integrated problem and some variants considering common routing policies are modeled mathematically. A general variable neighborhood search metaheuristic is presented to deal with real-size instances. Computational experiments attest to the effectiveness of the metaheuristic proposed compared to the exact models and common storage policies. When future demands are uncertain, it is common to use a zoning strategy to divide the storage area into zones and assign the most-demanded products to the best zones. Zone sizes are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics of the warehouse and the demands. We approach the zone sizing problem to determine which factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations are used to train four machine learning regression models - ordinary least squares, regression tree, random forest, and multilayer perceptron - to predict the optimal zone sizes given the set of relevant factors identified. We show that all trained models suggest tailor-made zone sizes with better picking performance than the arbitrary ones commonly used. Another approach to solving storage problems, both in the manual and RMFS, considers the correlations between products. The idea is that products constantly demanded together should be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one of the hardest to solve. We survey the most traditional QAP variants and develop a powerful parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed metaheuristic is shown to be among the best performing ones for the QAP and significantly outperforms the state-of-the-art for its variants. The RMFS allows easy repositioning of inventory pods during operations that can lead to a more energy-efficient picking process. We integrate pod repositioning decisions with order assignment and pod selection using a wave picking strategy such that pods are parked after being requested considering when and where they are expected to be requested next. We solve this integrated problem using stochastic programming considering the uncertainty about future demands and suggest a local search matheuristic to solve real-size instances. We show that our sample average approximation scheme is effective to simulate future demands since our methods improve solutions found when waves are planned without considering the future demands. This thesis is structured as follows. After an introductory chapter, we present a literature review on the manual and RMFS, and common decisions made to set up their storage and picking processes. The next four chapters detail the studies for the integrated storage and routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our findings are summarized in the last chapter

    Desenvolvimento de uma metodologia baseada em um modelo exato para resolver o picker routing problem em um caso real

    Get PDF
    Orientador: Prof. Dr. Cassius Tadeu ScarpinDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Sociais Aplicadas, Programa de Pós-Graduação em Gestão de Organizações, Liderança e Decisão. Defesa : Curitiba, 14/10/2022Inclui referênciasResumo: Neste trabalho apresenta-se uma aplicação real de um modelo exato para o Problema de Roteamento de Separadores de Pedidos, também conhecido com Picker Routing Problem (PRP), em uma Rede varejista do setor supermercadista. O estudo de caso feito na pesquisa foi no Centro de Distribuição desta rede supermercadista. O PRP consiste em determinar a menor rota a ser percorrida por um separador em um Centro de Distribuição (CD) de forma a coletar manualmente todos os produtos contidos em um determinado pedido. Tem-se como objetivo a aplicação de um modelo de Programação Linear Inteira Mista (PLIM), encontrado na literatura, e a comparação dos resultados obtidos com o atual método utilizado na empresa, a heurística SShape. Para isso, dados reais de pedidos de um determinado período foram coletados e algumas suposições relativas ao tamanho do problema e ao leiaute do CD foram feitas para gerar os 65 cenários de testes estabelecidos. Para atingir o objetivo almejado, foi necessário elaborar um algoritmo em três etapas, em linguagem de programação C#. A primeira etapa é o tratamento de dados e ajuste do leiaute para a elaboração do modelo Matemático. Com uso do solver GUROBI para a resolução dos testes, realizou-se a segunda etapa. A terceira etapa consistiu na aplicação da heurística S-Shape para possibilitar a comparação entre os métodos. As comparações entre o modelo aplicado e a heurística da empresa foram avaliadas em termos de economias (em metros) do trajeto gerado e tempo de resolução. Em 81,54% dos testes, o modelo obteve melhores resultados, gerando rotas com distâncias menores. Os outros 18,46% ambos os métodos retornaram o mesmo resultado. A melhoria média geral ficou em 8,41%. O modelo com parâmetro alterado resolveu 87,69% dos testes em até 30 minutos, considerado como tempo aceitável em termos práticos operacionais. Para os 12,31% dos testes resolvidos acima de 30 minutos, uma manipulação nos dados para contornar essa situação foi sugerida. Dessa forma, foi considerada como vantajosa a aplicação do modelo para o problema real de roteamento de pickers.Abstract: This work presents a real application of an exact model for the Picker Routing Problem (PRP), in a retail chain in the supermarket sector. The case study done in the research was in the Distribution Center of this supermarket chain. The PRP consists of determining the shortest route to be taken by a picker in a Distribution Center (DC) in order to manually collect all the products contained in a given order. The objective is to apply a Mixed Integer Linear Programming (MILP) model, found in the literature, and to compare the results obtained with the current method used in the company, the SShape heuristic. For this, actual order data for a given period was collected and some assumptions regarding the size of the problem and the CD layout were made to generate the 65 established test scenarios. To achieve the desired goal, it was necessary to develop an algorithm in three steps, in C # programming language. The first step is the data treatment and adjustment of the layout for the elaboration of the Mathematical model. Using the GUROBI solver to solve the tests, the second step was performed. The third step consisted of applying the S-Shape heuristic to make it possible to compare the methods. The comparisons between the applied model and the company's heuristic were evaluated in terms of savings (in meters) of the generated route and resolution time. In 81.54% of the tests, the model obtained better results, generating routes with shorter distances. The other 18.46% both methods returned the same result. The overall average improvement was 8.41%. The model with an altered parameter solved 87.69% of the tests within 30 minutes, considered an acceptable timeframe in operational practical terms. For the 12.31% of the tests resolved over 30 minutes, a manipulation of the data to get around this situation was suggested. Thus, it was considered advantageous to apply the model to the real problem of picker routing

    Diseño de una estrategia integrada de distribución y picking en una bodega

    Get PDF
    El proceso de picking en la logística de una bodega es primordial para la eficiencia del movimiento de material en una cadena de suministro. Este proceso es usado en cualquier empresa que venda productos físicos en una bodega. Después de varios indicadores calculados para entender el proceso completo de la bodega de IZC, uno de los principales problemas era la operación de picking. Teniendo esto en cuenta, el objetivo de esta investigación es entender el paso a paso de las operaciones que tiene la empresa para ayudarles a encontrar la forma óptima de reducir los recursos usados en la bodega. El principal acercamiento para lograrlo es analizando el proceso de picking y el layout de almacenamiento de cada SKY. Primero, se realizó un análisis de la posición actual de cada SKU y la cantidad de ventas realizadas en el 2018 por IZC. Después se estudió su proceso actual de despacho a los clientes y se realizaron una modificaciones para mejorar este procedimiento por medio de consolidación de pedidos y asignación de pasillos a cada operador. En tercer lugar, una distribución estratégica del SKU se propuso con dos diferentes layouts. Seguidamente se diseñó un modelo matemático de picking para entender mejor el procedimiento y hacer un análisis más profundo de como optimizar el proceso mencionado. Seguidamente se diseñó una simulación usando Vecino más Cercano y una búsqueda de Tabú local basado en el modelo establecido. La simulación se realizó semanal por 6 meses (26 semanas) y fue modelada en los tres layout, el actual y los dos propuestos. Finalmente, la simulación con el mejor resultado fue escogida y los impactos de la solución se midieron en las operaciones de la empresa.The picking process in the logistics of a warehouse is a crucial factor in the efficiency of the workflow of the material in a supply chain. This process is used in any company that sells physical products in a storage, and IZC Mayorista is one of them. After various indicators measured to understand the complete process in IZC ́s warehouse, one of the main concerns is the picking operation. With this being said, the aim of this investigation is to understand the step by step operations that are undertaken in this company and help them find an optimal way to reduce the resources used in the warehouse. The main approach to seek this goal is analyzing the picking process and the warehouse layout where each SKU is stored. First, we did an analysis of the current position of each SKU and the amount of sales made by IZC during 2018. Afterwards we studied the current process of the orders to deliver to the client and some modifications were made to improve this procedure with product consolidation and a hall assignment to each operator. Thirdly, a strategic distribution of the SKU stored in the warehouse is proposed with two different layouts. Then we designed a mathematical picking model to understand better the process and make a deeper analysis of how to optimize the picking logistics. Subsequently we designed a simulation that uses a Nearest Neighbor (NN) heuristic and a Tabu Search (TS) based on the model previously stated. The simulation was done weekly for 6 months (26 weeks) and was modeled for three layouts, the current one and the two proposed. Then the simulated layout with the best result was chosen and the impacts of the solution is measured in the company ́s operations.Ingeniero (a) IndustrialPregrad

    High volume conveyor sortation system analysis

    Get PDF
    The design and operation of a high volume conveyor sortation system are important due to its high cost, large footprint and critical role in the system. In this thesis, we study the characteristics of the conveyor sortation system from performance evaluation and design perspectives employing continuous modeling approaches. We present two continuous conveyor models (Delay and Stock Model and Batch on Conveyor Model) with different representation accuracy in a unified mathematical framework. Based on the Batch on Conveyor Model, we develop a fast fluid simulation methodology. We address the feasibility of implementing fluid simulation from modeling capabilities, algorithm design and simulation performance in terms of accuracy and simulation time. From a design perspective, we focus on rates determination and accumulation design in the accumulation and merge subsystem. The optimization problem is to find a minimum cost design that satisfies some predefined performance requirements under stochastic conditions. We first transform this stochastic programming problem into a deterministic nonlinear programming problem through sample path based optimization method. A gradient based method is adopted to solve the deterministic problem. Since there is no closed form for performance metric even for a deterministic input stream, we adopt continuous modeling to develop deterministic performance evaluation models and conduct sensitivity analysis on these models. We explore the prospects of using the two continuous conveyor models we presented.Ph.D.Committee Chair: Chen Zhou; Committee Member: Gunter Sharp; Committee Member: Leon F. McGinnis; Committee Member: Spiridon Reveliotis; Committee Member: Yorai Ward
    corecore