62,803 research outputs found

    Variable Selection and Model Choice in Structured Survival Models

    Get PDF
    In many situations, medical applications ask for flexible survival models that allow to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection is desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether parametric modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. Its properties and performance are investigated in simulation studies. The new modeling approach is used to build a flexible survival model for intensive care patients suffering from severe sepsis. A software implementation is available to the interested reader

    Using Phone Sensors and an Artificial Neural Network to Detect Gait Changes During Drinking Episodes in the Natural Environment

    Full text link
    Phone sensors could be useful in assessing changes in gait that occur with alcohol consumption. This study determined (1) feasibility of collecting gait-related data during drinking occasions in the natural environment, and (2) how gait-related features measured by phone sensors relate to estimated blood alcohol concentration (eBAC). Ten young adult heavy drinkers were prompted to complete a 5-step gait task every hour from 8pm to 12am over four consecutive weekends. We collected 3-xis accelerometer, gyroscope, and magnetometer data from phone sensors, and computed 24 gait-related features using a sliding window technique. eBAC levels were calculated at each time point based on Ecological Momentary Assessment (EMA) of alcohol use. We used an artificial neural network model to analyze associations between sensor features and eBACs in training (70% of the data) and validation and test (30% of the data) datasets. We analyzed 128 data points where both eBAC and gait-related sensor data was captured, either when not drinking (n=60), while eBAC was ascending (n=55) or eBAC was descending (n=13). 21 data points were captured at times when the eBAC was greater than the legal limit (0.08 mg/dl). Using a Bayesian regularized neural network, gait-related phone sensor features showed a high correlation with eBAC (Pearson's r > 0.9), and >95% of estimated eBAC would fall between -0.012 and +0.012 of actual eBAC. It is feasible to collect gait-related data from smartphone sensors during drinking occasions in the natural environment. Sensor-based features can be used to infer gait changes associated with elevated blood alcohol content

    Data-Analytics Modeling of Electrical Impedance Measurements for Cell Culture Monitoring

    Get PDF
    High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices’ applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applicationsEspaña, Ministerio de Ciencia e Innovación y Universidades project RTI2018-093512-B-C2

    An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests

    Get PDF
    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, that can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine and bioinformatics within the past few years. High dimensional problems are common not only in genetics, but also in some areas of psychological research, where only few subjects can be measured due to time or cost constraints, yet a large amount of data is generated for each subject. Random forests have been shown to achieve a high prediction accuracy in such applications, and provide descriptive variable importance measures reflecting the impact of each variable in both main effects and interactions. The aim of this work is to introduce the principles of the standard recursive partitioning methods as well as recent methodological improvements, to illustrate their usage for low and high dimensional data exploration, but also to point out limitations of the methods and potential pitfalls in their practical application. Application of the methods is illustrated using freely available implementations in the R system for statistical computing
    corecore