3,246 research outputs found

    Using learned affordances for robotic behavior development

    Get PDF
    “Developmental robotics” proposes that, instead of trying to build a robot that shows intelligence once and for all, what one must do is to build robots that can develop. These robots should be equipped with behaviors that are simple but enough to bootstrap the system. Then, as the robot interacts with its environment, it should display increasingly complex behaviors. In this paper, we propose such a development scheme for a mobile robot. J.J. Gibson’s concept of “affordances” provides the basis of this development scheme, and we use a formalization of affordances to make the robot learn about the dynamics of its interactions with its environment. We show that an autonomous robot can start with pre-coded primitive behaviors, and as it executes its behaviors randomly in an environment, it can learn the affordance relations between the environment and its behaviors. We then present two ways of using these learned structures, in achieving more complex, intentional behaviors. In the first case, the robot still uses its pre-coded primitive behaviors only, but the sequencing of these primitive behaviors are such that new more complex behaviors emerge. In the second case, the robot makes a “blending” of its pre-coded primitive behaviors to create new behaviors that can be more effective in reaching its goal than any of the pre-coded behaviors

    Learning at the Ends: From Hand to Tool Affordances in Humanoid Robots

    Full text link
    One of the open challenges in designing robots that operate successfully in the unpredictable human environment is how to make them able to predict what actions they can perform on objects, and what their effects will be, i.e., the ability to perceive object affordances. Since modeling all the possible world interactions is unfeasible, learning from experience is required, posing the challenge of collecting a large amount of experiences (i.e., training data). Typically, a manipulative robot operates on external objects by using its own hands (or similar end-effectors), but in some cases the use of tools may be desirable, nevertheless, it is reasonable to assume that while a robot can collect many sensorimotor experiences using its own hands, this cannot happen for all possible human-made tools. Therefore, in this paper we investigate the developmental transition from hand to tool affordances: what sensorimotor skills that a robot has acquired with its bare hands can be employed for tool use? By employing a visual and motor imagination mechanism to represent different hand postures compactly, we propose a probabilistic model to learn hand affordances, and we show how this model can generalize to estimate the affordances of previously unseen tools, ultimately supporting planning, decision-making and tool selection tasks in humanoid robots. We present experimental results with the iCub humanoid robot, and we publicly release the collected sensorimotor data in the form of a hand posture affordances dataset.Comment: dataset available at htts://vislab.isr.tecnico.ulisboa.pt/, IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2017

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Discovering Communication

    Get PDF
    What kind of motivation drives child language development? This article presents a computational model and a robotic experiment to articulate the hypothesis that children discover communication as a result of exploring and playing with their environment. The considered robotic agent is intrinsically motivated towards situations in which it optimally progresses in learning. To experience optimal learning progress, it must avoid situations already familiar but also situations where nothing can be learnt. The robot is placed in an environment in which both communicating and non-communicating objects are present. As a consequence of its intrinsic motivation, the robot explores this environment in an organized manner focusing first on non-communicative activities and then discovering the learning potential of certain types of interactive behaviour. In this experiment, the agent ends up being interested by communication through vocal interactions without having a specific drive for communication
    • …
    corecore