108,732 research outputs found

    Personalization of Saliency Estimation

    Full text link
    Most existing saliency models use low-level features or task descriptions when generating attention predictions. However, the link between observer characteristics and gaze patterns is rarely investigated. We present a novel saliency prediction technique which takes viewers' identities and personal traits into consideration when modeling human attention. Instead of only computing image salience for average observers, we consider the interpersonal variation in the viewing behaviors of observers with different personal traits and backgrounds. We present an enriched derivative of the GAN network, which is able to generate personalized saliency predictions when fed with image stimuli and specific information about the observer. Our model contains a generator which generates grayscale saliency heat maps based on the image and an observer label. The generator is paired with an adversarial discriminator which learns to distinguish generated salience from ground truth salience. The discriminator also has the observer label as an input, which contributes to the personalization ability of our approach. We evaluate the performance of our personalized salience model by comparison with a benchmark model along with other un-personalized predictions, and illustrate improvements in prediction accuracy for all tested observer groups

    Generating descriptive text from functional brain images

    Get PDF
    Recent work has shown that it is possible to take brain images of a subject acquired while they saw a scene and reconstruct an approximation of that scene from the images. Here we show that it is also possible to generate _text_ from brain images. We began with images collected as participants read names of objects (e.g., ``Apartment'). Without accessing information about the object viewed for an individual image, we were able to generate from it a collection of semantically pertinent words (e.g., "door," "window"). Across images, the sets of words generated overlapped consistently with those contained in articles about the relevant concepts from the online encyclopedia Wikipedia. The technique described, if developed further, could offer an important new tool in building human computer interfaces for use in clinical settings

    Natural Language Generation and Fuzzy Sets : An Exploratory Study on Geographical Referring Expression Generation

    Get PDF
    This work was supported by the Spanish Ministry for Economy and Competitiveness (grant TIN2014-56633-C3-1-R) and by the European Regional Development Fund (ERDF/FEDER) and the Galician Ministry of Education (grants GRC2014/030 and CN2012/151). Alejandro Ramos-Soto is supported by the Spanish Ministry for Economy and Competitiveness (FPI Fellowship Program) under grant BES-2012-051878.Postprin

    Evidence for Information Processing in the Brain

    Get PDF
    Many cognitive and neuroscientists attempt to assign biological functions to brain structures. To achieve this end, scientists perform experiments that relate the physical properties of brain structures to organism-level abilities, behaviors, and environmental stimuli. Researchers make use of various measuring instruments and methodological techniques to obtain this kind of relational evidence, ranging from single-unit electrophysiology and optogenetics to whole brain functional MRI. Each experiment is intended to identify brain function. However, seemingly independent of experimental evidence, many cognitive scientists, neuroscientists, and philosophers of science assume that the brain processes information as a scientific fact. In this work we analyze categories of relational evidence and find that although physical features of specific brain areas selectively covary with external stimuli and abilities, and that the brain shows reliable causal organization, there is no direct evidence supporting the claim that information processing is a natural function of the brain. We conclude that the belief in brain information processing adds little to the science of cognitive science and functions primarily as a metaphor for efficient communication of neuroscientific data
    corecore