1,037 research outputs found

    A hierarchical approach to improve the ant colony optimization algorith

    Get PDF
    The ant colony optimization algorithm (ACO) is a fast heuristic-based method for finding favorable solutions to the traveling salesman problem (TSP). When the data set reaches larger values however, the ACO runtime increases dramatically. As a result, clustering nodes into groups is an effective way to reduce the size of the problem while leveraging the advantages of the ACO algorithm. The method for recombining groups of nodes is explored by treating the graph as a hierarchy of clusters, and modifying the original ACO heuristic to operate on a hypergraph. This method of using hierarchical clustering is significantly faster than the original ACO algorithm, even when normal clustering techniques are applied, while producing improved tour lengths

    A parallel implementation of ant colony optimization

    Get PDF
    Ant Colony Optimization is a relatively new class of meta-heuristic search techniques for optimization problems. As it is a population-based technique that examines numerous solution options at each step of the algorithm, there are a variety of parallelization opportunities. In this paper, several parallel decomposition strategies are examined. These techniques are applied to a specific problem, namely the travelling salesman problem, with encouraging speedup and efficiency results.Full Tex

    An ACO-Inspired, Probabilistic, Greedy Approach to the Drone Traveling Salesman Problem

    Get PDF
    In recent years, major companies have done research on using drones for parcel delivery. Research has shown that this can result in significant savings, which has led to the formulation of various truck and drone routing and scheduling optimization problems. This paper explains and analyzes a new approach to the Drone Traveling Salesman Problem (DTSP) based on ant colony optimization (ACO). The ACO-based approach has an acceptance policy that maximizes the usage of the drone. The results reveal that the pheromone causes the algorithm to converge quickly to the best solution. The algorithm performs comparably to the MIP model, CP model, and EA of Rich & Ham (2018), especially in instances with a larger number of stops

    Optimized assembly design for resource efficient production in a multiproduct manufacturing system

    Get PDF
    Resource efficiency is one of the greatest challenges for sustainable manufacturing. Material flow in manufacturing systems directly influences resource efficiency, financial cost and environmental impact. A framework for material flow assessment in manufacturing systems (MFAM) was applied to a complex multi-product manufacturing case study. This supported the identification of options to alter material flow through changes to the product assembly design, to improve overall resource efficiency through eliminating resource intensive changeovers. Alternative assembly designs were examined using a combination of intelligent computation techniques: k-means clustering, genetic algorithm and ant colony algorithm. This provided recommendations balancing improvement potential with extent of process modification impact

    CLUSTERING-BASED OPTIMISATION OF MULTIPLE TRAVELING SALESMAN PROBLEM

    Get PDF

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima
    • …
    corecore