1,490 research outputs found

    On the comparison of uncertainty criteria for active SLAM

    Get PDF
    In this report, we consider the computation of the D-optimality criterion as a metric for the uncertainty of a SLAM system. Properties regarding the use of this uncertainty criterion in the active SLAM context are highlighted, and comparisons against the A-optimality criterion and entropy are presented. This report shows that contrary to what has been previously reported in the literature, the D-optimality criterion is indeed capable of giving fruitful information as a metric for the uncertainty of a robot performing SLAM. Finally, through various experiments with simulated and real robots, we support our claims and show that the use of D-opt has desirable effects in various SLAM related tasks such as active mapping and exploration

    Low cost inertial-based localization system for a service robot

    Get PDF
    Dissertation presented at Faculty of Sciences and Technology of the New University of Lisbon to attain the Master degree in Electrical and Computer Science EngineeringThe knowledge of a robot’s location it’s fundamental for most part of service robots. The success of tasks such as mapping and planning depend on a good robot’s position knowledge. The main goal of this dissertation is to present a solution that provides a estimation of the robot’s location. This is, a tracking system that can run either inside buildings or outside them, not taking into account just structured environments. Therefore, the localization system takes into account only measurements relative. In the presented solution is used an AHRS device and digital encoders placed on wheels to make a estimation of robot’s position. It also relies on the use of Kalman Filter to integrate sensorial information and deal with estimate errors. The developed system was testes in real environments through its integration on real robot. The results revealed that is not possible to attain a good position estimation using only low-cost inertial sensors. Thus, is required the integration of more sensorial information, through absolute or relative measurements technologies, to provide a more accurate position estimation

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Incorporation of acoustic sensors in the regulation of a mobile robot

    Get PDF
    This article introduces the incorporation of acoustic sensors for the localization of a mobile robot. The robot is considered as a sound source and its position is located applying a Time Delay of Arrival (TDOA) method. Since the accuracy of this method varies with the microphone array, a navigation acoustic map that indicates the location errors is built. This map also provides the robot with navigation trajectories point-to-point and the control is capable to drive the robot through these trajectories to a desired configuration. The proposed localization method is thoroughly tested using both a 900 Hz square signal and the natural sound of the robot, which is driven near the desired point with an average error of 0:067 m.This is an Accepted Manuscript of an article published by Taylor & Francis in Advanced Robotics on 01/01/2019, available online: http://www.tandfonline.com/10.1080/01691864.2019.1573703.”Peer ReviewedPostprint (author's final draft
    corecore