36,638 research outputs found

    An application driven comparison of depth perception on desktop 3D displays.

    Get PDF
    Desktop 3D displays vary in their optical design and this results in a significant variation in the way in which stereo images are physically displayed on different 3D displays. When precise depth judgements need to be made these differences may become critical to task performance. Applications where this is a particular issue include medical imaging, geoscience and scientific visualization. We investigate perceived depth thresholds for four classes of desktop 3D display; full resolution, row interleaved, column interleaved and colour-column interleaved. Given the same input image resolution we calculate the physical view resolution for each class of display to geometrically predict its minimum perceived depth threshold. To verify our geometric predictions we present the design of a task where viewers are required to judge which of two neighboring squares lies in front of the other. We report results from a trial using this task where participants are randomly asked to judge whether they can perceive one of four levels of image disparity (0,2,4 and 6 pixels) on seven different desktop 3D displays. The results show a strong effect and the task produces reliable results that are sensitive to display differences. However, we conclude that depth judgement performance cannot always be predicted from display geometry alone. Other system factors, including software drivers, electronic interfaces, and individual participant differences must also be considered when choosing a 3D display to make critical depth judgements

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    Implementation of a robotic flexible assembly system

    Get PDF
    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning

    PCSYS: The optimal design integration system picture drawing system with hidden line algorithm capability for aerospace vehicle configurations

    Get PDF
    A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm

    Forecasting OPEC oil price: a comparison of parametric stochastic models

    Get PDF
    Most academic papers on oil price forecasting have frequently focused on the use of WTI and European Brent oil price series with little focus on other equally important international oil price benchmarks such as the OPEC Reference Basket (ORB). The ORB is a weighted average of 11-member countries crude streams weighted according to production and exports to the main markets. This paper compares the forecasting accuracy of four stochastic processes and four univariate random walk models using daily data of OPEC Reference Basket series. The study finds that the random walk univariate model outperforms the other stochastic processes. An element of uncertainty was introduced into the point estimates by deriving probability distribution that describes the possible price paths on a given day and their likelihood of occurrence. This will help decision makers, traders and analysts to have a better understanding of the possible daily prices that could occur. JEL Classification Numbers: E64; C22; Q30 Keywords: Oil Price Forecasting, Probability Distributions, and Forecast Evaluation Statistics, Brownian Motion with Mean Reversion process, GARCH Model
    corecore