28,587 research outputs found

    Overview of the ImageCLEF 2016 Medical Task

    Get PDF
    ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language–independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well. The medical task has focused more on image retrieval in the beginning and then retrieval and classification tasks in subsequent years. In 2016 a main focus was the creation of meta data for a collection of medical images taken from articles of the the biomedical scientific literature. In total 8 teams participated in the four tasks and 69 runs were submitted. No team participated in the caption prediction task, a totally new task. Deep learning has now been used for several of the ImageCLEF tasks and by many of the participants obtaining very good results. A majority of runs was submitting using deep learning and this follows general trends in machine learning. In several of the tasks multimodal approaches clearly led to best results

    Bag-of-Colors for Biomedical Document Image Classification

    Get PDF
    The number of biomedical publications has increased noticeably in the last 30 years. Clinicians and medical researchers regularly have unmet information needs but require more time for searching than is usually available to find publications relevant to a clinical situation. The techniques described in this article are used to classify images from the biomedical open access literature into categories, which can potentially reduce the search time. Only the visual information of the images is used to classify images based on a benchmark database of ImageCLEF 2011 created for the task of image classification and image retrieval. We evaluate particularly the importance of color in addition to the frequently used texture and grey level features. Results show that bags–of–colors in combination with the Scale Invariant Feature Transform (SIFT) provide an image representation allowing to improve the classification quality. Accuracy improved from 69.75% of the best system in ImageCLEF 2011 using visual information, only, to 72.5% of the system described in this paper. The results highlight the importance of color for the classification of biomedical images

    Classification and Retrieval of Digital Pathology Scans: A New Dataset

    Full text link
    In this paper, we introduce a new dataset, \textbf{Kimia Path24}, for image classification and retrieval in digital pathology. We use the whole scan images of 24 different tissue textures to generate 1,325 test patches of size 1000×\times1000 (0.5mm×\times0.5mm). Training data can be generated according to preferences of algorithm designer and can range from approximately 27,000 to over 50,000 patches if the preset parameters are adopted. We propose a compound patch-and-scan accuracy measurement that makes achieving high accuracies quite challenging. In addition, we set the benchmarking line by applying LBP, dictionary approach and convolutional neural nets (CNNs) and report their results. The highest accuracy was 41.80\% for CNN.Comment: Accepted for presentation at Workshop for Computer Vision for Microscopy Image Analysis (CVMI 2017) @ CVPR 2017, Honolulu, Hawai
    • …
    corecore