692 research outputs found

    KASR: A Reliable and Practical Approach to Attack Surface Reduction of Commodity OS Kernels

    Full text link
    Commodity OS kernels have broad attack surfaces due to the large code base and the numerous features such as device drivers. For a real-world use case (e.g., an Apache Server), many kernel services are unused and only a small amount of kernel code is used. Within the used code, a certain part is invoked only at runtime while the rest are executed at startup and/or shutdown phases in the kernel's lifetime run. In this paper, we propose a reliable and practical system, named KASR, which transparently reduces attack surfaces of commodity OS kernels at runtime without requiring their source code. The KASR system, residing in a trusted hypervisor, achieves the attack surface reduction through a two-step approach: (1) reliably depriving unused code of executable permissions, and (2) transparently segmenting used code and selectively activating them. We implement a prototype of KASR on Xen-4.8.2 hypervisor and evaluate its security effectiveness on Linux kernel-4.4.0-87-generic. Our evaluation shows that KASR reduces the kernel attack surface by 64% and trims off 40% of CVE vulnerabilities. Besides, KASR successfully detects and blocks all 6 real-world kernel rootkits. We measure its performance overhead with three benchmark tools (i.e., SPECINT, httperf and bonnie++). The experimental results indicate that KASR imposes less than 1% performance overhead (compared to an unmodified Xen hypervisor) on all the benchmarks.Comment: The work has been accepted at the 21st International Symposium on Research in Attacks, Intrusions, and Defenses 201

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    PROTECT: container process isolation using system call interception

    Get PDF
    Virtualization is the underpinning technology enabling cloud computing service provisioning, and container-based virtualization provides an efficient sharing of the underlying host kernel libraries amongst multiple guests. While there has been research on protecting the host against compromise by malicious guests, research on protecting the guests against a compromised host is limited. In this paper, we present an access control solution which prevents the host from gaining access into the guest containers and their data. Using system call interception together with the built-in AppArmor mandatory access control (MAC) approach the solution protects guest containers from a malicious host attempting to compromise the integrity of data stored therein. Evaluation of results have shown that it can effectively prevent hostile access from host to guest containers while ensuring minimal performance overhead

    Thin Hypervisor-Based Security Architectures for Embedded Platforms

    Get PDF
    Virtualization has grown increasingly popular, thanks to its benefits of isolation, management, and utilization, supported by hardware advances. It is also receiving attention for its potential to support security, through hypervisor-based services and advanced protections supplied to guests. Today, virtualization is even making inroads in the embedded space, and embedded systems, with their security needs, have already started to benefit from virtualization’s security potential. In this thesis, we investigate the possibilities for thin hypervisor-based security on embedded platforms. In addition to significant background study, we present implementation of a low-footprint, thin hypervisor capable of providing security protections to a single FreeRTOS guest kernel on ARM. Backed by performance test results, our hypervisor provides security to a formerly unsecured kernel with minimal performance overhead, and represents a first step in a greater research effort into the security advantages and possibilities of embedded thin hypervisors. Our results show that thin hypervisors are both possible and beneficial even on limited embedded systems, and sets the stage for more advanced investigations, implementations, and security applications in the future
    corecore