112 research outputs found

    Using genomic annotations increases statistical power to detect eGenes.

    Get PDF
    MotivationExpression quantitative trait loci (eQTLs) are genetic variants that affect gene expression. In eQTL studies, one important task is to find eGenes or genes whose expressions are associated with at least one eQTL. The standard statistical method to determine whether a gene is an eGene requires association testing at all nearby variants and the permutation test to correct for multiple testing. The standard method however does not consider genomic annotation of the variants. In practice, variants near gene transcription start sites (TSSs) or certain histone modifications are likely to regulate gene expression. In this article, we introduce a novel eGene detection method that considers this empirical evidence and thereby increases the statistical power.ResultsWe applied our method to the liver Genotype-Tissue Expression (GTEx) data using distance from TSSs, DNase hypersensitivity sites, and six histone modifications as the genomic annotations for the variants. Each of these annotations helped us detected more candidate eGenes. Distance from TSS appears to be the most important annotation; specifically, using this annotation, our method discovered 50% more candidate eGenes than the standard permutation [email protected] or [email protected]

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Genetic architecture of gene regulation in Indonesian populations identifies QTLs associated with global and local ancestries.

    Get PDF
    Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex traits, hinders precision medicine, and contributes to health disparities. To map genetic effects on gene regulation in the underrepresented Indonesian population, we have integrated genotype, gene expression, and CpG methylation data from 115 participants across three island populations that capture the major sources of genomic diversity in the region. In a comparison with European datasets, we identify eQTLs shared between Indonesia and Europe as well as population-specific eQTLs that exhibit differences in allele frequencies and/or overall expression levels between populations. By combining local ancestry and archaic introgression inference with eQTLs and methylQTLs, we identify regulatory loci driven by modern Papuan ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization connects QTLs detected here to hematological traits, and further comparison with European datasets reflects the poor overall transferability of GWAS statistics across diverse populations. Our findings illustrate how population-specific genetic architecture, local ancestry, and archaic introgression drive variation in gene regulation across genetically distinct and in admixed populations and highlight the need for performing association studies on non-European populations

    The GTEx Consortium atlas of genetic regulatory effects across human tissues

    Get PDF

    A multi-tissue atlas of regulatory variants in cattle:Cattle Genotype-Tissue Expression Atlas

    Get PDF
    Characterization of genetic regulatory variants acting on the livestock gene expression is essential for interpreting the molecular mechanisms underlying traits of economic value and for increasing the rate of genetic gain through artificial selection. Here we build a Cattle Genotype-Tissue Expression atlas (CattleGTEx) as part of the pilot phase of Farm animal GTEx (FarmGTEx) project for the research community based on publicly available 7,180 RNA-Seq samples. We describe the transcriptomic landscape of over 100 tissues/cell types and report hundreds of thousands of genetic associations with gene expression and alternative splicing for 23 distinct tissues. We evaluate the tissue-sharing patterns of these genetic regulatory effects, and functionally annotate them using multi-omics data. Finally, we link gene expression in different tissues to 43 economically important traits using both transcriptome-wide association and colocalization analyses to decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    The GTEx Consortium atlas of genetic regulatory effects across human tissues

    Get PDF
    corecore