22,499 research outputs found

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    An Overview of Schema Theory

    Full text link
    The purpose of this paper is to give an introduction to the field of Schema Theory written by a mathematician and for mathematicians. In particular, we endeavor to to highlight areas of the field which might be of interest to a mathematician, to point out some related open problems, and to suggest some large-scale projects. Schema theory seeks to give a theoretical justification for the efficacy of the field of genetic algorithms, so readers who have studied genetic algorithms stand to gain the most from this paper. However, nothing beyond basic probability theory is assumed of the reader, and for this reason we write in a fairly informal style. Because the mathematics behind the theorems in schema theory is relatively elementary, we focus more on the motivation and philosophy. Many of these results have been proven elsewhere, so this paper is designed to serve a primarily expository role. We attempt to cast known results in a new light, which makes the suggested future directions natural. This involves devoting a substantial amount of time to the history of the field. We hope that this exposition will entice some mathematicians to do research in this area, that it will serve as a road map for researchers new to the field, and that it will help explain how schema theory developed. Furthermore, we hope that the results collected in this document will serve as a useful reference. Finally, as far as the author knows, the questions raised in the final section are new.Comment: 27 pages. Originally written in 2009 and hosted on my website, I've decided to put it on the arXiv as a more permanent home. The paper is primarily expository, so I don't really know where to submit it, but perhaps one day I will find an appropriate journa

    Modelling of selection and mating decisions in tree breeding programs

    Get PDF
    Hardwood trees from the temperate forests of southern Australia are an important source of timber for high quality paper. Two species in particular, Eucalyptus globulus and Eucalyptus nitens are well suited to this purpose and are now widely grown in commercial plantations. These plantations have been established by professional tree breeders using seedlings derived originally from broadly based collection of seed in natural forests. To increase productivity it is desirable to select trees that grow quickly and give high yields of top quality timber. Nevertheless it is important to maintain genetic diversity in the breeding population and thereby retain a robust capacity to adapt to changing environmental factors. In this article we formulate a number of related mathematical models for the selection and mating processes and discuss the consequences of these models. We recommend a relatively simple scheme which can be implemented on an IBM compatible PC using standard algorithms

    Memory based on abstraction for dynamic fitness functions

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2008.This paper proposes a memory scheme based on abstraction for evolutionary algorithms to address dynamic optimization problems. In this memory scheme, the memory does not store good solutions as themselves but as their abstraction, i.e., their approximate location in the search space. When the environment changes, the stored abstraction information is extracted to generate new individuals into the population. Experiments are carried out to validate the abstraction based memory scheme. The results show the efficiency of the abstraction based memory scheme for evolutionary algorithms in dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1

    Predicting the energy output of wind farms based on weather data: important variables and their correlation

    Get PDF
    Pre-print available at: http://arxiv.org/abs/1109.1922Wind energy plays an increasing role in the supply of energy world wide. The energy output of a wind farm is highly dependent on the weather conditions present at its site. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproduction. In this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters, we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We report on the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly supplied weather data. Ā© 2012 Elsevier Ltd.Ekaterina Vladislavleva, Tobias Friedrich, Frank Neumann, Markus Wagne

    Learning in abstract memory schemes for dynamic optimization

    Get PDF
    We investigate an abstraction based memory scheme for evolutionary algorithms in dynamic environments. In this scheme, the abstraction of good solutions (i.e., their approximate location in the search space) is stored in the memory instead of good solutions themselves and is employed to improve future problem solving. In particular, this paper shows how learning takes place in the abstract memory scheme and how the performance in problem solving changes over time for different kinds of dynamics in the fitness landscape. The experiments show that the abstract memory enables learning processes and efficiently improves the performance of evolutionary algorithms in dynamic environments
    • ā€¦
    corecore