318 research outputs found

    A stochastic local search algorithm with adaptive acceptance for high-school timetabling

    Get PDF
    Automating high school timetabling is a challenging task. This problem is a well known hard computational problem which has been of interest to practitioners as well as researchers. High schools need to timetable their regular activities once per year, or even more frequently. The exact solvers might fail to find a solution for a given instance of the problem. A selection hyper-heuristic can be defined as an easy-to-implement, easy-to-maintain and effective 'heuristic to choose heuristics' to solve such computationally hard problems. This paper describes the approach of the team hyper-heuristic search strategies and timetabling (HySST) to high school timetabling which competed in all three rounds of the third international timetabling competition. HySST generated the best new solutions for three given instances in Round 1 and gained the second place in Rounds 2 and 3. It achieved this by using a fairly standard stochastic search method but significantly enhanced by a selection hyper-heuristic with an adaptive acceptance mechanism. © 2014 Springer Science+Business Media New York

    Automatic Class Timetable Generation using a Hybrid Genetic and Tabu Algorithm

    Get PDF
    Timetable generation is a combinatorial optimization problem. Meta Heuristic methods and Evolutionary Algorithms have given the best results when it comes to solving the problem of timetable generation. In our paper the problem of timetable generation for the Computer Science and Engineering Dept. of BMS College of Engineering is solved with the help of Genetic Algorithm and Tabu Search which belong to the class of Evolutionary Algorithms and Meta – Heuristics respectively. Genetic Algorithms help in finding multiple optimal solutions in one iteration but they can get stuck at local optima. This can be avoided by using Tabu Search procedure. DOI: 10.17762/ijritcc2321-8169.150510

    Solving high school timetabling problems worldwide using selection hyper-heuristics

    Get PDF
    High school timetabling is one of those recurring NP-hard real-world combinatorial optimisation problems that has to be dealt with by many educational institutions periodically, and so has been of interest to practitioners and researchers. Solving a high school timetabling problem requires scheduling of resources and events into time slots subject to a set of constraints. Recently, an international competition, referred to as ITC 2011 was organised to determine the state-of-the-art approach for high school timetabling. The problem instances, obtained from eight different countries across the world used in this competition became a benchmark for further research in the field. Selection hyper-heuristics are general-purpose improvement methodologies that control/mix a given set of low level heuristics during the search process. In this study, we evaluate the performance of a range of selection hyper-heuristics combining different reusable components for high school timetabling. The empirical results show the success of the approach which embeds an adaptive great-deluge move acceptance method on the ITC 2011 benchmark instances. This selection hyper-heuristic ranks the second among the previously proposed approaches including the ones competed at ITC 2011

    How to exploit fitness landscape properties of timetabling problem: A newoperator for quantum evolutionary algorithm

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.eswa.2020.114211The fitness landscape of the timetabling problems is analyzed in this paper to provide some insight into theproperties of the problem. The analyses suggest that the good solutions are clustered in the search space andthere is a correlation between the fitness of a local optimum and its distance to the best solution. Inspiredby these findings, a new operator for Quantum Evolutionary Algorithms is proposed which, during the searchprocess, collects information about the fitness landscape and tried to capture the backbone structure of thelandscape. The knowledge it has collected is used to guide the search process towards a better region in thesearch space. The proposed algorithm consists of two phases. The first phase uses a tabu mechanism to collectinformation about the fitness landscape. In the second phase, the collected data are processed to guide thealgorithm towards better regions in the search space. The algorithm clusters the good solutions it has foundin its previous search process. Then when the population is converged and trapped in a local optimum, itis divided into sub-populations and each sub-population is designated to a cluster. The information in thedatabase is then used to reinitialize the q-individuals, so they represent better regions in the search space.This way the population maintains diversity and by capturing the fitness landscape structure, the algorithmis guided towards better regions in the search space. The algorithm is compared with some state-of-the-artalgorithms from PATAT competition conferences and experimental results are presented.Peer reviewe

    Courses timetabling based on hill climbing algorithm

    Get PDF
    In addition to its monotonous nature and excessive time requirements, the manual school timetable scheduling often leads to more than one class being assigned to the same instructor, or more than one instructor being assigned to the same classroom during the same slot time, or even leads to exercise in intentional partialities in favor of a particular group of instructors. In this paper, an automated school timetable scheduling is presented to help overcome the traditional conflicts inherent in the manual scheduling approach. In this approach, hill climbing algorithms have been modified to transact hard and soft constraints. Soft constraints are not easy to be satisfied typically, but hard constraints are obligated. The implementation of this technique has been successfully experimented in different schools with various kinds of side constraints. Results show that the initial solution can be improved by 72% towards the optimal solution within the first 5 seconds and by 50% from the second iteration while the optimal solution will be achieved after 15 iterations ensuring that more than 50% of scientific courses will take place in the early slots time while more than 50% of non-scientific courses will take place during the later time's slots

    Assessing hyper-heuristic performance

    Get PDF
    Limited attention has been paid to assessing the generality performance of hyper-heuristics. The performance of hyper-heuristics has been predominately assessed in terms of optimality which is not ideal as the aim of hyper-heuristics is not to be competitive with state of the art approaches but rather to raise the level of generality, i.e. the ability of a technique to produce good results for different problem instances or problems rather than the best results for some instances and poor results for others. Furthermore from existing literature in this area it is evident that different hyper-heuristics aim to achieve different levels of generality and need to be assessed as such. To cater for this the paper firstly presents a new taxonomy of four different levels of generality that can be attained by a hyper-heuristic based on a survey of the literature. The paper then proposes a performance measure to assess the performance of different types of hyper-heuristics at the four levels of generality in terms of generality rather than optimality. Three case studies from the literature are used to demonstrate the application of the generality performance measure. The paper concludes by examining how the generality measure can be combined with measures of other performance criteria, such as optimality, to assess hyper-heuristic performance on more than one criterion

    A Hidden Markov Model Approach to the Problem of Heuristic Selection in Hyper-Heuristics with a Case Study in High School Timetabling Problems

    Get PDF
    Operations research is a well-established field that uses computational systems to support decisions in business and public life. Good solutions to operations research problems can make a large difference to the efficient running of businesses and organisations and so the field often searches for new methods to improve these solutions. The high school timetabling problem is an example of an operations research problem and is a challenging task which requires assigning events and resources to time slots subject to a set of constraints. In this article, a new sequence-based selection hyper-heuristic is presented that produces excellent results on a suite of high school timetabling problems. In this study, we present an easy-to-implement, easy-to-maintain, and effective sequence-based selection hyper-heuristic to solve high school timetabling problems using a benchmark of unified real-world instances collected from different countries. We show that with sequence-based methods, it is possible to discover new best known solutions for a number of the problems in the timetabling domain. Through this investigation, the usefulness of sequence-based selection hyper-heuristics has been demonstrated and the capability of these methods has been shown to exceed the state of the art

    Examination timetabling at the University of Cape Town: a tabu search approach to automation

    Get PDF
    With the rise of schedules and scheduling problems, solutions proposed in literature have expanded yet the disconnect between research and reality remains. The University of Cape Town's (UCT) Examinations Office currently produces their schedules manually with software relegated to error-checking status. While they have requested automation, this study is the first attempt to integrate optimisation techniques into the examination timetabling process. Tabu search and Nelder-Mead methodologies were tested on the UCT November 2014 examination timetabling data with tabu search proving to be more effective, capable of producing feasible solutions from randomised initial solutions. To make this research more accessible, a user-friendly app was developed which showcased the optimisation techniques in a more digestible format. The app includes data cleaning specific to UCT's data management system and was presented to the UCT Examinations Office where they expressed support for further development: in its current form, the app would be used as a secondary tool after an initial solution has been manually obtained
    • …
    corecore