729 research outputs found

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    Automatic supervision of gestures to guide novice surgeons during training

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00464-013-3285-9Background Virtual surgery simulators enable surgeons to learn by themselves, shortening their learning curves. Virtual simulators offer an objective evaluation of the surgeon’s skills at the end of each training session. The considered evaluation parameters are based on the analysis of the surgeon’s gestures performed throughout the training session. Currently, this information is usually known by surgeons only at the end of the training session, but very limited during the training performance. In this paper, we present a novel method for automatic and interactive evaluation of the surgeon’s skills that is able to supervise inexperienced surgeons during their training session with surgical simulators. Methods The method is based on the assumption that the sequence of gestures carried out by an expert surgeon in the simulator can be translated into a sequence (a character string) that should be reproduced by a novice surgeon during a training session. In this work, a string-matching algorithm has been modified to calculate the alignment and distance between the sequences of both expert and novice during the training performance. Results The results have shown that it is possible to distinguish between different skill levels at all times during the surgical training session. Conclusions The main contribution of this paper is a method where the difference between an expert’s sequence of gestures and a novice’s ongoing sequence is used to guide inexperienced surgeons. This is possible by indicating to novices the gesture corrections to be applied during surgical training as continuous expert supervision would do.Monserrat, C.; Lucas, A.; Hernández Orallo, J.; Rupérez Moreno, MJ. (2014). Automatic supervision of gestures to guide novice surgeons during training. Surgical Endoscopy. 28(4):1360-1370. doi:10.1007/s00464-013-3285-9S13601370284Ericsson KA (ed) (2009) Development of professional expertise: toward measurement of expert performance and design of optimal learning environments. Cambridge University Press, New YorkMcGaghie WC (2008) Research opportunities in simulation-based medical education using deliberate practice. Acad Emerg Med 15:995–1001Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15:988–994Issenberg SB, McGaghie WC, Petrusa ER et al (2005) Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach 27:10–28Porte MC, Xeoulis G, Reznick RK, Dubrowski A (2007) Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills. Am J Surg 193:105–110. doi: 10.1016/j.amjsurg.2006.03.016Hall PAV, Dowling GR (1980) Approximate string matching. ACM computing surveys (CSUR) 18(2):381–402. doi: 10.1145/356827.356830Stylopoulos N, Cotin S, Maithel SK et al (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18(5):782–789. doi: 10.3233/978-1-60750-938-7-336Solis J, Oshima N, Ishii H, Matsuoka N et al (2009) Quantitative assessment of the surgical training methods with the suture/ligature training system WKS-2RII. In: IEEE international conference on robotics and automation, 2009 (ICRA ‘09), Kobe, pp 4219–4224. doi: 10.1109/ROBOT.2009.5152314Lin Z et al (2010) Objective evaluation of laparoscopic surgical skills using Waseda bioinstrumentation system WB-3. In: IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, pp 247–252. doi: 10.1109/ROBIO.2010.5723335Chmarra MK, Klein S, Winter JCF, Jansen FW, Dankelman J (2010) Objective classification of residents based on their psychomotor laparoscopic skills. Surg Endosc 24(5):1031–1039. doi: 10.1007/s00464-009-0721-yLin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230. doi: 10.3109/10929080600989189Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53(3):399–413. doi: 10.1109/TBME.2005.869771Lahanas V, Loukas C, Nikiteas N, Dimitroulis D, Georgiou E (2011) Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios. In: 17th international conference on digital signal processing (DSP), Corfu. doi: 10.1109/ICDSP.2011.6004893Leong JJ et al (2006) HMM assessment of quality of movement trajectory in laparoscopic surgery. In: International conference on medical image computing and computer-assisted intervention (MICCAI’06), pp 752–759. doi: 10.3109/10929080701730979Megali G, Sinigaglia S, Tonet O, Dario P (2006) Modelling and evaluation of surgical performance using Hidden Markov models. IEEE Trans Biomed Eng 53(10):1911–1919. doi: 10.1109/TBME.2006.881784Huang J, Payandeh S, Doris P, Hajshirmohammadi I (2005) Fuzzy classification: towards evaluating performance on a surgical simulator. Stud Health Technol Inform 111:194–200Hajshirmohammadi I, Payandeh S (2007) Fuzzy set theory for performance evaluation in a surgical simulator. Presence 16(6):603–622. doi: 10.1162/pres.16.6.603Ukkonen E (1985) Algorithms for approximate string matching. Inf Control 64(1–3):100–118. doi: 10.1016/S0019-9958(85)80046-2Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88. doi: 10.1145/375360.375365Damerau FJ (1964) A technique for computer detection and correction of spelling errors. Commun ACM 7(3):171–176. doi: 10.1145/363958.363994Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms. In: Proceedings of the seventh international symposium on string processing information retrieval (SPIRE’00), A Coruña, p 39. doi: 10.1109/SPIRE.2000.878178Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. doi: 10.1109/34.888718Simbionix™, Lap Mentor™. simbionix.com. http://simbionix.com/simulators/lap-mentor/library-of-modules/basic-skills/ . Accessed 31 Jan 2013Wagner RA, Fischer MJ (1974) Algorithms for approximate string matching. J ACM 21(1):168–173. doi: 10.1016/S0019-9958(85)80046-2Hirschberg DS (1975) A linear space algorithm for computing maximal common subsequences. Commun ACM 18(6):341–343. doi: 10.1145/360825.36086

    Adaptive probability scheme for behaviour monitoring of the elderly using a specialised ambient device

    Get PDF
    A Hidden Markov Model (HMM) modified to work in combination with a Fuzzy System is utilised to determine the current behavioural state of the user from information obtained with specialised hardware. Due to the high dimensionality and not-linearly-separable nature of the Fuzzy System and the sensor data obtained with the hardware which informs the state decision, a new method is devised to update the HMM and replace the initial Fuzzy System such that subsequent state decisions are based on the most recent information. The resultant system first reduces the dimensionality of the original information by using a manifold representation in the high dimension which is unfolded in the lower dimension. The data is then linearly separable in the lower dimension where a simple linear classifier, such as the perceptron used here, is applied to determine the probability of the observations belonging to a state. Experiments using the new system verify its applicability in a real scenario

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions

    Get PDF
    PURPOSE: Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. METHODS: The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. RESULTS: Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. CONCLUSION: ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments
    • …
    corecore