4,746 research outputs found

    Semi-Global Stereo Matching with Surface Orientation Priors

    Full text link
    Semi-Global Matching (SGM) is a widely-used efficient stereo matching technique. It works well for textured scenes, but fails on untextured slanted surfaces due to its fronto-parallel smoothness assumption. To remedy this problem, we propose a simple extension, termed SGM-P, to utilize precomputed surface orientation priors. Such priors favor different surface slants in different 2D image regions or 3D scene regions and can be derived in various ways. In this paper we evaluate plane orientation priors derived from stereo matching at a coarser resolution and show that such priors can yield significant performance gains for difficult weakly-textured scenes. We also explore surface normal priors derived from Manhattan-world assumptions, and we analyze the potential performance gains using oracle priors derived from ground-truth data. SGM-P only adds a minor computational overhead to SGM and is an attractive alternative to more complex methods employing higher-order smoothness terms.Comment: extended draft of 3DV 2017 (spotlight) pape

    Identifying the lights position in photometric stereo under unknown lighting

    Full text link
    Reconstructing the 3D shape of an object from a set of images is a classical problem in Computer Vision. Photometric stereo is one of the possible approaches. It stands on the assumption that the object is observed from a fixed point of view under different lighting conditions. The traditional approach requires that the position of the light sources is accurately known. It has been proved that the lights position can be estimated directly from the data, when at least 6 images of the observed object are available. In this paper, we give a Matlab implementation of the algorithm for solving the photometric stereo problem under unknown lighting, and propose a simple shooting technique to solve the bas-relief ambiguity.Comment: new versio

    Photometric Stereo by Hemispherical Metric Embedding

    Full text link
    Photometric Stereo methods seek to reconstruct the 3d shape of an object from motionless images obtained with varying illumination. Most existing methods solve a restricted problem where the physical reflectance model, such as Lambertian reflectance, is known in advance. In contrast, we do not restrict ourselves to a specific reflectance model. Instead, we offer a method that works on a wide variety of reflectances. Our approach uses a simple yet uncommonly used property of the problem - the sought after normals are points on a unit hemisphere. We present a novel embedding method that maps pixels to normals on the unit hemisphere. Our experiments demonstrate that this approach outperforms existing manifold learning methods for the task of hemisphere embedding. We further show successful reconstructions of objects from a wide variety of reflectances including smooth, rough, diffuse and specular surfaces, even in the presence of significant attached shadows. Finally, we empirically prove that under these challenging settings we obtain more accurate shape reconstructions than existing methods

    The Surfacing of Multiview 3D Drawings via Lofting and Occlusion Reasoning

    Full text link
    The three-dimensional reconstruction of scenes from multiple views has made impressive strides in recent years, chiefly by methods correlating isolated feature points, intensities, or curvilinear structure. In the general setting, i.e., without requiring controlled acquisition, limited number of objects, abundant patterns on objects, or object curves to follow particular models, the majority of these methods produce unorganized point clouds, meshes, or voxel representations of the reconstructed scene, with some exceptions producing 3D drawings as networks of curves. Many applications, e.g., robotics, urban planning, industrial design, and hard surface modeling, however, require structured representations which make explicit 3D curves, surfaces, and their spatial relationships. Reconstructing surface representations can now be constrained by the 3D drawing acting like a scaffold to hang on the computed representations, leading to increased robustness and quality of reconstruction. This paper presents one way of completing such 3D drawings with surface reconstructions, by exploring occlusion reasoning through lofting algorithms.Comment: CVPR 2017 expanded version with improvements over camera ready, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, 201

    Three-Filters-to-Normal: An Accurate and Ultrafast Surface Normal Estimator

    Full text link
    Over the past decade, significant efforts have been made to improve the trade-off between speed and accuracy of surface normal estimators (SNEs). This paper introduces an accurate and ultrafast SNE for structured range data. The proposed approach computes surface normals by simply performing three filtering operations, namely, two image gradient filters (in horizontal and vertical directions, respectively) and a mean/median filter, on an inverse depth image or a disparity image. Despite the simplicity of the method, no similar method already exists in the literature. In our experiments, we created three large-scale synthetic datasets (easy, medium and hard) using 24 3-dimensional (3D) mesh models. Each mesh model is used to generate 1800--2500 pairs of 480x640 pixel depth images and the corresponding surface normal ground truth from different views. The average angular errors with respect to the easy, medium and hard datasets are 1.6 degrees, 5.6 degrees and 15.3 degrees, respectively. Our C++ and CUDA implementations achieve a processing speed of over 260 Hz and 21 kHz, respectively. Our proposed SNE achieves a better overall performance than all other existing computer vision-based SNEs. Our datasets and source code are publicly available at: sites.google.com/view/3f2n

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware â„“p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Fast and Robust Fixed-Rank Matrix Recovery

    Full text link
    We address the problem of efficient sparse fixed-rank (S-FR) matrix decomposition, i.e., splitting a corrupted matrix MM into an uncorrupted matrix LL of rank rr and a sparse matrix of outliers SS. Fixed-rank constraints are usually imposed by the physical restrictions of the system under study. Here we propose a method to perform accurate and very efficient S-FR decomposition that is more suitable for large-scale problems than existing approaches. Our method is a grateful combination of geometrical and algebraical techniques, which avoids the bottleneck caused by the Truncated SVD (TSVD). Instead, a polar factorization is used to exploit the manifold structure of fixed-rank problems as the product of two Stiefel and an SPD manifold, leading to a better convergence and stability. Then, closed-form projectors help to speed up each iteration of the method. We introduce a novel and fast projector for the SPD\text{SPD} manifold and a proof of its validity. Further acceleration is achieved using a Nystrom scheme. Extensive experiments with synthetic and real data in the context of robust photometric stereo and spectral clustering show that our proposals outperform the state of the art

    ResDepth: Learned Residual Stereo Reconstruction

    Full text link
    We propose an embarrassingly simple but very effective scheme for high-quality dense stereo reconstruction: (i) generate an approximate reconstruction with your favourite stereo matcher; (ii) rewarp the input images with that approximate model; (iii) with the initial reconstruction and the warped images as input, train a deep network to enhance the reconstruction by regressing a residual correction; and (iv) if desired, iterate the refinement with the new, improved reconstruction. The strategy to only learn the residual greatly simplifies the learning problem. A standard Unet without bells and whistles is enough to reconstruct even small surface details, like dormers and roof substructures in satellite images. We also investigate residual reconstruction with less information and find that even a single image is enough to greatly improve an approximate reconstruction. Our full model reduces the mean absolute error of state-of-the-art stereo reconstruction systems by >50%, both in our target domain of satellite stereo and on stereo pairs from the ETH3D benchmark.Comment: updated supplementary materia

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    ALIGNet: Partial-Shape Agnostic Alignment via Unsupervised Learning

    Full text link
    The process of aligning a pair of shapes is a fundamental operation in computer graphics. Traditional approaches rely heavily on matching corresponding points or features to guide the alignment, a paradigm that falters when significant shape portions are missing. These techniques generally do not incorporate prior knowledge about expected shape characteristics, which can help compensate for any misleading cues left by inaccuracies exhibited in the input shapes. We present an approach based on a deep neural network, leveraging shape datasets to learn a shape-aware prior for source-to-target alignment that is robust to shape incompleteness. In the absence of ground truth alignments for supervision, we train a network on the task of shape alignment using incomplete shapes generated from full shapes for self-supervision. Our network, called ALIGNet, is trained to warp complete source shapes to incomplete targets, as if the target shapes were complete, thus essentially rendering the alignment partial-shape agnostic. We aim for the network to develop specialized expertise over the common characteristics of the shapes in each dataset, thereby achieving a higher-level understanding of the expected shape space to which a local approach would be oblivious. We constrain ALIGNet through an anisotropic total variation identity regularization to promote piecewise smooth deformation fields, facilitating both partial-shape agnosticism and post-deformation applications. We demonstrate that ALIGNet learns to align geometrically distinct shapes, and is able to infer plausible mappings even when the target shape is significantly incomplete. We show that our network learns the common expected characteristics of shape collections, without over-fitting or memorization, enabling it to produce plausible deformations on unseen data during test time.Comment: To be presented at SIGGRAPH Asia 201
    • …
    corecore