8,250 research outputs found

    Performing Hybrid Recommendation in Intermodal Transportation – the FTMarket System’s Recommendation Module

    Get PDF
    Diverse recommendation techniques have been already proposed and encapsulated into several e-business applications, aiming to perform a more accurate evaluation of the existing information and accordingly augment the assistance provided to the users involved. This paper reports on the development and integration of a recommendation module in an agent-based transportation transactions management system. The module is built according to a novel hybrid recommendation technique, which combines the advantages of collaborative filtering and knowledge-based approaches. The proposed technique and supporting module assist customers in considering in detail alternative transportation transactions that satisfy their requests, as well as in evaluating completed transactions. The related services are invoked through a software agent that constructs the appropriate knowledge rules and performs a synthesis of the recommendation policy

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Labour Market Information Driven, Personalized, OER Recommendation System for Lifelong Learners

    Get PDF
    In this paper, we suggest a novel method to aid lifelong learners to access relevant OER based learning content to master skills demanded on the labour market. Our software prototype 1) applies Text Classification and Text Mining methods on vacancy announcements to decompose jobs into meaningful skills components, which lifelong learners should target; and 2) creates a hybrid OER Recommender System to suggest personalized learning content for learners to progress towards their skill targets. For the first evaluation of this prototype we focused on two job areas: Data Scientist, and Mechanical Engineer. We applied our skill extractor approach and provided OER recommendations for learners targeting these jobs. We conducted in-depth, semi-structured interviews with 12 subject matter experts to learn how our prototype performs in terms of its objectives, logic, and contribution to learning. More than 150 recommendations were generated, and 76.9% of these recommendations were treated as useful by the interviewees. Interviews revealed that a personalized OER recommender system, based on skills demanded by labour market, has the potential to improve the learning experience of lifelong learners.Comment: This paper has been accepted to be published in the proceedings of CSEDU 2020 by SciTePres

    Learning Heterogeneous Similarity Measures for Hybrid-Recommendations in Meta-Mining

    Get PDF
    The notion of meta-mining has appeared recently and extends the traditional meta-learning in two ways. First it does not learn meta-models that provide support only for the learning algorithm selection task but ones that support the whole data-mining process. In addition it abandons the so called black-box approach to algorithm description followed in meta-learning. Now in addition to the datasets, algorithms also have descriptors, workflows as well. For the latter two these descriptions are semantic, describing properties of the algorithms. With the availability of descriptors both for datasets and data mining workflows the traditional modelling techniques followed in meta-learning, typically based on classification and regression algorithms, are no longer appropriate. Instead we are faced with a problem the nature of which is much more similar to the problems that appear in recommendation systems. The most important meta-mining requirements are that suggestions should use only datasets and workflows descriptors and the cold-start problem, e.g. providing workflow suggestions for new datasets. In this paper we take a different view on the meta-mining modelling problem and treat it as a recommender problem. In order to account for the meta-mining specificities we derive a novel metric-based-learning recommender approach. Our method learns two homogeneous metrics, one in the dataset and one in the workflow space, and a heterogeneous one in the dataset-workflow space. All learned metrics reflect similarities established from the dataset-workflow preference matrix. We demonstrate our method on meta-mining over biological (microarray datasets) problems. The application of our method is not limited to the meta-mining problem, its formulations is general enough so that it can be applied on problems with similar requirements

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches
    • …
    corecore