1,599 research outputs found

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    SkILL - a Stochastic Inductive Logic Learner

    Full text link
    Probabilistic Inductive Logic Programming (PILP) is a rel- atively unexplored area of Statistical Relational Learning which extends classic Inductive Logic Programming (ILP). This work introduces SkILL, a Stochastic Inductive Logic Learner, which takes probabilistic annotated data and produces First Order Logic theories. Data in several domains such as medicine and bioinformatics have an inherent degree of uncer- tainty, that can be used to produce models closer to reality. SkILL can not only use this type of probabilistic data to extract non-trivial knowl- edge from databases, but it also addresses efficiency issues by introducing a novel, efficient and effective search strategy to guide the search in PILP environments. The capabilities of SkILL are demonstrated in three dif- ferent datasets: (i) a synthetic toy example used to validate the system, (ii) a probabilistic adaptation of a well-known biological metabolism ap- plication, and (iii) a real world medical dataset in the breast cancer domain. Results show that SkILL can perform as well as a deterministic ILP learner, while also being able to incorporate probabilistic knowledge that would otherwise not be considered

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables
    • …
    corecore