55 research outputs found

    Using Automated Task Solution Synthesis to Generate Critical Junctures for Management of Planned and Reactive Cooperation between a Human-Controlled Blimp and an Autonomous Ground Robot

    Get PDF
    This thesis documents the use of an approach for automated task solution synthesis that algorithmically and automatically identifies periods during which a team of less-than-fully capable robots benefit from tightly-coupled, coordinated, cooperative behavior. I test two hypotheses: 1) That a team’s performance can be increased by cooperating during certain specific periods of a mission and 2) That these periods can be identified automatically and algorithmically. I also demonstrate how identification of cooperative periods can be performed both off-line prior to the application and reactively during mission execution. I validate these premises in a real-world experiment using a human-piloted Unmanned Aerial Vehicle (UAV) and an autonomous mobile robot. For this experiment I construct a UAV and use an off-the-shelf robot. To identify the cooperative periods I use the ASyMTRe task solution synthesis system, and I use the Player robot server for control tasks such as navigation and path planning. My results show that teams employing cooperative behaviors during algorithmically identified cooperative periods exhibit better performance than non-cooperative teams in a target localization task. I also present results showing an increased time cost for cooperative behaviors and compare the increased time cost of two cooperative approaches that generate cooperative periods prior to and during mission execution

    Coalition Formation and Execution in Multi-robot Tasks

    Get PDF
    In this research, I explore several related problems in distributed robot systems that must be addressed in order to achieve multi-robot tasks, in which individual robots may not possess all the required capabilities. While most previous research work on multi-robot cooperation mainly concentrates on loosely-coupled multi-robot tasks, a more challenging problem is to also address tightly-coupled multi- robot tasks involving close robot interactions, which often require capability sharing. Three related topics towards addressing these tasks are discussed, as follows: Forming coalitions, which determines how robots should form into subgroups (i.e., coalitions) to address individual tasks. To achieve system autonomy, the ability to identify the feasibility of potential solutions is critical for forming coalitions. A general IQ-ASyMTRe architecture, which is formally proven to be sound and complete in this research, is introduced to incorporate this capability based on the ASyMTRe architecture. Executing coalitions, which coordinates different robots within the same coalition during physical execution to accomplish individual tasks. For executing coalitions, the IQ-ASyMTRe+ approach is presented. An information quality measure is introduced to control the robots to maintain the required constraints for task execution in dynamic environment. Redundancies at sensory and computational levels are utilized to enable execution that is robust to internal and external influences. Task allocation, which optimizes the overall performance of the system when multiple tasks need to be addressed. In this research, this problem is analyzed and the formulation is extended. A new greedy heuristic is introduced, which considers inter-task resource constraints to approximate the influence between different assignments in task allocation. Through combining the above approaches, a framework that achieves system autonomy can be created for addressing multi-robot tasks

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable “engine” for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design

    Sustainability Conversations for Impact: Transdisciplinarity on Four Scales

    Get PDF
    Sustainability is a dynamic, multi-scale endeavor. Coherence can be lost between scales – from project teams, to organizations, to networks, and, most importantly, down to conversations. Sustainability researchers have embraced transdisciplinarity, as it is grounded in science, shared language, broad participation, and respect for difference. Yet, transdisciplinarity at these four scales is not well-defined. In this dissertation I extend transdisciplinarity out from the project to networks and organizations, and down into conversation, adding novel lenses and quantitative approaches. In Chapter 2, I propose transdisciplinarity incorporate academic disciplines which help cross scales: Organizational Learning, Knowledge Management, Applied Cooperation, and Data Science. In Chapter 3 I then use a mixed-method approach to study a transdisciplinary organization, the Maine Aquaculture Hub, as it develops strategy. Using social network analysis and conversation analytics, I evaluate how the Hub’s network-convening, strategic thinking and conversation practices turn organization-scale transdisciplinarity into strategic advantage. In Chapters 4 and 5, conversation is the nexus of transdisciplinarity. I study seven public aquaculture lease scoping meetings (informal town halls) and classify conversation activity by “discussion discipline,” i.e., rhetorical and social intent. I compute the relationship between discussion discipline proportions and three sustainability outcomes of intent-to-act, options-generation, and relationship-building. I consider exogenous factors, such as signaling, gender balance, timing and location. I show that where inquiry is high, so is innovation. Where acknowledgement is high, so is intent-to-act. Where respect is high, so is relationship-building. Indirectness and sarcasm dampen outcomes. I propose seven interventions to improve sustainability conversation capacity, such as nudging, networks, and using empirical models. Chapter 5 explores those empirical models: I use natural language-processing (NLP) to detect the discussion disciplines by training a model using the previously coded transcripts. Then I use that model to classify 591 open-source conversation transcripts, and regress the sustainability outcomes, per-transcript, on discussion discipline proportions. I show that all three conversation outcomes can be predicted by the discussion disciplines, and most statistically-significant being intent-to-act, which responds directly to acknowledgement and respect. Conversation AI is the next frontier of transdisciplinarity for sustainability solutions

    Dynamic virtual reality user interface for teleoperation of heterogeneous robot teams

    Full text link
    This research investigates the possibility to improve current teleoperation control for heterogeneous robot teams using modern Human-Computer Interaction (HCI) techniques such as Virtual Reality. It proposes a dynamic teleoperation Virtual Reality User Interface (VRUI) framework to improve the current approach to teleoperating heterogeneous robot teams

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Products and Services

    Get PDF
    Today’s global economy offers more opportunities, but is also more complex and competitive than ever before. This fact leads to a wide range of research activity in different fields of interest, especially in the so-called high-tech sectors. This book is a result of widespread research and development activity from many researchers worldwide, covering the aspects of development activities in general, as well as various aspects of the practical application of knowledge

    Advances in Manufacturing Technology XXVII: Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013)

    Get PDF
    ICMR2013 was organised by Cranfield University on the 19-20 September 2013. The conference focuses on any aspects of product development, manufacturing technology, manufacturing systems, information systems and digital technologies. It provides an excellent avenue for researchers to present state-of-the-art multidisciplinary manufacturing research and exchange ideas. In addition to the four keynote speeches from Airbus and Rolls-Royce and three invited presentations, there are 108 papers in these proceedings. These papers are split into 24 technical sessions. The International Conference on Manufacturing Research is a major event for academics and industrialists engaged in manufacturing research. Held annually in the UK since the late 1970s, the conference is renowned as a friendly and inclusive environment that brings together a broad community of researchers who share a common goal; developing and managing the technologies and operations that are key to sustaining the success of manufacturing businesses. For over two decades, ICMR has been the main manufacturing research conference organised in the UK, successfully bringing researchers, academics and industrialists together to share their knowledge and experiences. Initiated a National Conference by the Consortium of UK University Manufacturing Engineering Heads (COMEH), it became an International Conference in 2003. COMEH is an independent body established in 1978. Its main aim is to promote manufacturing engineering education, training and research. To achieve this, the Consortium maintains a close liaison with government bodies concerned with the training and continuing development of professional engineers, while responding to the appropriate consultative and discussion documents and other initiatives. COMEH is represented on the Engineering Professor’s council (EPC) and it organises and supports national manufacturing engineering education research conferences and symposia
    • …
    corecore