9,692 research outputs found

    Assessing and Improving the Reliability of Volunteered Land Cover Reference Data

    Get PDF
    Volunteered geographic data are being used increasingly to support land cover mapping and validation, yet the reliability of the volunteered data still requires further research. This study proposes data-based guidelines to help design the data collection by assessing the reliability of volunteered data collected using the Geo-Wiki tool. We summarized the interpretation difficulties of the volunteers at a global scale, including those areas and land cover types that generate the most confusion. We also examined the factors affecting the reliability of majority opinion and individual classification. The results showed that the highest interpretation inconsistency of the volunteers occurred in the ecoregions of tropical and boreal forests (areas with relatively poor coverage of very high resolution images), the tundra (a unique region that the volunteers are unacquainted with), and savannas (transitional zones). The volunteers are good at identifying forests, snow/ice and croplands, but not grasslands and wetlands. The most confusing pairs of land cover types are also captured in this study and they vary greatly with different biomes. The reliability can be improved by providing more high resolution ancillary data, more interpretation keys in tutorials, and tools that assist in coverage estimation for those areas and land cover types that are most prone to confusion. We found that the reliability of the majority opinion was positively correlated with the percentage of volunteers selecting this choice and negatively related to their self-evaluated uncertainty when very high resolution images were available. Factors influencing the reliability of individual classifications were also compared and the results indicated that the interpretation difficulty of the target sample played a more important role than the knowledge base of the volunteers. The professional background and local knowledge had an influence on the interpretation performance, especially in identifying vegetation land cover types other than croplands. These findings can help in building a better filtering system to improve the reliability of volunteered data used in land cover validation and other applications

    The impact of contributor confidence, expertise and distance on the crowdsourced land cover data quality

    Get PDF
    There is much interest in the opportunities for formal scientific investigations afforded by crowdsourcing and citizen sensing activities. However, one of the critical research issues relates to the 'quality' of the data collected in this way. This paper uses volunteer data on land cover collected under the Geo-Wiki system, where contributors label the land cover class at a series of locations, with expert labels at the same locations. It examines the statistical relationships between the accuracy of volunteer labels, their self assessed confidence in labeling, their 'experiential distance' to the location under consideration and the level of their domain expertise. The results show that distance has a minor effect on the reliability of land cover labeling, and that generally expertise has a greater effect, but not for all landcover classes

    Comparing the quality of crowdsourced data contributed by expert and non-experts

    Get PDF
    There is currently a lack of in-situ environmental data for the calibration and validation of remotely sensed products and for the development and verification of models. Crowdsourcing is increasingly being seen as one potentially powerful way of increasing the supply of in-situ data but here are a number of concerns over the subsequent use of the data, in particular over data quality. This paper examined crowdsourced data from the Geo-Wiki crowdsourcing tool for land cover validation to determine whether there were significant differences in quality between the answers provided by experts and non-experts in the domain of remote sensing and therefore the extent to which crowdsourced data describing human impact and land cover can be used in further scientific research. The results showed that there was little difference between experts and non-experts in identifying human impact although results varied by land cover while experts were better than non-experts in identifying the land cover type. This suggests the need to create training materials with more examples in those areas where difficulties in identification were encountered, and to offer some method for contributors to reflect on the information they contribute, perhaps by feeding back the evaluations of their contributed data or by making additional training materials available. Accuracies were also found to be higher when the volunteers were more consistent in their responses at a given location and when they indicated higher confidence, which suggests that these additional pieces of information could be used in the development of robust measures of quality in the future

    VGI quality control

    Get PDF
    This paper presents a framework for considering quality control of volunteered geographic information (VGI). Different issues need to be considered during the conception, acquisition and post-acquisition phases of VGI creation. This includes items such as collecting metadata on the volunteer, providing suitable training, giving corrective feedback during the mapping process and use of control data, among others. Two examples of VGI data collection are then considered with respect to this quality control framework, i.e. VGI data collection by National Mapping Agencies and by the most recent Geo-Wiki tool, a game called Cropland Capture. Although good practices are beginning to emerge, there is still the need for the development and sharing of best practice, especially if VGI is to be integrated with authoritative map products or used for calibration and/or validation of land cover in the future

    Usability of VGI for validation of land cover maps

    Get PDF
    Volunteered Geographic Information (VGI) represents a growing source of potentially valuable data for many applications, including land cover map validation. It is still an emerging field and many different approaches can be used to take value from VGI, but also many pros and cons are related to its use. Therefore, since it is timely to get an overview of the subject, the aim of this article is to review the use of VGI as reference data for land cover map validation. The main platforms and types of VGI that are used and that are potentially useful are analysed. Since quality is a fundamental issue in map validation, the quality procedures used by the platforms that collect VGI to increase and control data quality are reviewed and a framework for addressing VGI quality assessment is proposed. A review of cases where VGI was used as an additional data source to assist in map validation is made, as well as cases where only VGI was used, indicating the procedures used to assess VGI quality and fitness for use. A discussion and some conclusions are drawn on best practices, future potential and the challenges of the use of VGI for land cover map validation

    A framework of quality assessment methods for crowdsourced geographic information : a systematic literature review

    Get PDF
    Collaboration is the foundation to strengthen disaster preparedness and for effective emergency response actions at all levels. Some studies have highlighted that remote volunteers, i.e., volunteers supported by Web 2.0 technologies, possess the potential to strengthen humanitarian relief organizations by offering information regarding disaster-affected people and infrastructure. Although studies have explored various aspects of this topic, none of those provided an overview of the state-of-the-art of researches on the collaboration among humanitarian organizations and communities of remote volunteers. With the aim of overcoming this gap, a systematic literature review was conducted on the existing research works. Therefore, the main contribution of this work lies in examining the state of research in this field and in identifying potential research gaps. The results show that most of the research works addresses the general domain of disaster management, whereas only few of them address the domain of humanitarian logistics. Collaboration among Humanitarian Relief Organizations and Volunteer Technical Communities: Identifying Research Opportunities and Challenges through a Systematic Literature Review (PDF Download Available). Available from: https://www.researchgate.net/publication/315790817_Collaboration_among_Humanitarian_Relief_Organizations_and_Volunteer_Technical_Communities_Identifying_Research_Opportunities_and_Challenges_through_a_Systematic_Literature_Review [accessed May 26, 2017]

    A flexible framework for assessing the quality of crowdsourced data

    Get PDF
    Ponencias, comunicaciones y pósters presentados en el 17th AGILE Conference on Geographic Information Science "Connecting a Digital Europe through Location and Place", celebrado en la Universitat Jaume I del 3 al 6 de junio de 2014.Crowdsourcing as a means of data collection has produced previously unavailable data assets and enriched existing ones, but its quality can be highly variable. This presents several challenges to potential end users that are concerned with the validation and quality assurance of the data collected. Being able to quantify the uncertainty, define and measure the different quality elements associated with crowdsourced data, and introduce means for dynamically assessing and improving it is the focus of this paper. We argue that the required quality assurance and quality control is dependent on the studied domain, the style of crowdsourcing and the goals of the study. We describe a framework for qualifying geolocated data collected from non-authoritative sources that enables assessment for specific case studies by creating a workflow supported by an ontological description of a range of choices. The top levels of this ontology describe seven pillars of quality checks and assessments that present a range of techniques to qualify, improve or reject data. Our generic operational framework allows for extension of this ontology to specific applied domains. This will facilitate quality assurance in real-time or for post-processing to validate data and produce quality metadata. It enables a system that dynamically optimises the usability value of the data captured. A case study illustrates this framework

    Are crowdsourced datasets suitable for specialized routing services? Case study of Openstreetmap for routing of people with limited mobility

    Get PDF
    Nowadays, Volunteered Geographic Information (VGI) has increasingly gained attractiveness to both amateur users and professionals. Using data generated from the crowd has become a hot topic for several application domains including transportation. However, there are concerns regarding the quality of such datasets. As one of the most famous crowdsourced mapping platforms, we analyze the fitness for use of OpenStreetMap (OSM) database for routing and navigation of people with limited mobility. We assess the completeness of OSM data regarding sidewalk information. Relevant attributes for sidewalk information such as sidewalk width, incline, surface texture, etc. are considered, and through both extrinsic and intrinsic quality analysis methods, we present the results of fitness for use of OSM data for routing services of disabled persons. Based on empirical results, it is concluded that OSM data of relatively large spatial extents inside all studied cities could be an acceptable region of interest to test and evaluate wheelchair routing and navigation services, as long as other data quality parameters such as positional accuracy and logical consistency are checked and proved to be acceptable. We present an extended version of OSMatrix web service and explore how it is employed to perform spatial and temporal analysis of sidewalk data completeness in OSM. The tool is beneficial for piloting activities, whereas the pilot site planners can query OpenStreetMap and visualize the degree of sidewalk data availability in a certain region of interest. This would allow identifying the areas that data are mostly missing and plan for data collection events. Furthermore, empirical results of data completeness for several OSM data indicators and their potential relation to sidewalk data completeness are presented and discussed. Finally, the article ends with an outlook for future research study in this area

    Mapping and the Citizen Sensor

    Get PDF
    Maps are a fundamental resource in a diverse array of applications ranging from everyday activities, such as route planning through the legal demarcation of space to scientific studies, such as those seeking to understand biodiversity and inform the design of nature reserves for species conservation. For a map to have value, it should provide an accurate and timely representation of the phenomenon depicted and this can be a challenge in a dynamic world. Fortunately, mapping activities have benefitted greatly from recent advances in geoinformation technologies. Satellite remote sensing, for example, now offers unparalleled data acquisition and authoritative mapping agencies have developed systems for the routine production of maps in accordance with strict standards. Until recently, much mapping activity was in the exclusive realm of authoritative agencies but technological development has also allowed the rise of the amateur mapping community. The proliferation of inexpensive and highly mobile and location aware devices together with Web 2.0 technology have fostered the emergence of the citizen as a source of data. Mapping presently benefits from vast amounts of spatial data as well as people able to provide observations of geographic phenomena, which can inform map production, revision and evaluation. The great potential of these developments is, however, often limited by concerns. The latter span issues from the nature of the citizens through the way data are collected and shared to the quality and trustworthiness of the data. This book reports on some of the key issues connected with the use of citizen sensors in mapping. It arises from a European Co-operation in Science and Technology (COST) Action, which explored issues linked to topics ranging from citizen motivation, data acquisition, data quality and the use of citizen derived data in the production of maps that rival, and sometimes surpass, maps arising from authoritative agencies
    • …
    corecore