28,457 research outputs found

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Responsible Environmental Behavior, Energy Conservation, and Compact Fluorescent Bulbs: You Can Lead a Horse to Water, But Can You Make It Drink?

    Get PDF
    Despite professing to care about the environment and supporting environmental causes, individuals behave in environmentally irresponsible ways like driving when they can take public transportation, littering, or disposing of toxic materials in unsound ways. This is the author\u27s fourth exploration of how to encourage individuals to stop behaving irresponsibly about the environment they allege to care deeply about. The prior three articles all explored how the norm of environmental protection could be enlisted in this effort; this article applies those theoretical conclusions to the very practical task of getting people to switch the type of light bulb they use. To accomplish this, the article synthesizes the previous articles into an assumption about the critical role of norms in changing personal behavior and tests that assumption by exploring how to make individuals more responsible consumers of electricity and adhere to the concrete norm of energy conservation by swapping out their incandescent light bulbs for compact fluorescent lights (“CFLs”). The agreed upon goal behind energy conservation is to reduce the country’s reliance on fossil fuel-based energy production, thus reducing the emission of harmful airborne pollutants and greenhouse gases as well as the related environmental harms associated with coal production. One way to reduce residential energy consumption is to persuade individuals to switch to CFLs. Up to ninety percent of energy produced by incandescent bulbs is lost as heat; switching to CFLs is one way to prevent this energy loss

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Smart home energy management

    Get PDF
    The new challenges on Information and Communication Technologies (ICT) in Automatic Home Systems (AHS) focus on the methods useful to monitor, control, and optimize the data management flow and the use of energy. An AHS is a residential dwelling, in some cases with a garden or an outdoor space, equipped with sensors and actuators to collect data and send controls according to the activities and expectations of the occupants/users. Home automation provides a centralized or distributed control of electrical appliances. Adding intelligence to the home environment, it would be possible to obtain, not only excellent levels of comfort, but also energy savings both inside and outside the dwelling, for instance using smart solutions for the management of the external lights and of the garden

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    corecore