282 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Predicting and Recovering Link Failure Localization Using Competitive Swarm Optimization for DSR Protocol in MANET

    Get PDF
    Portable impromptu organization is a self-putting together, major construction-less, independent remote versatile hub that exists without even a trace of a determined base station or government association. MANET requires no extraordinary foundation as the organization is unique. Multicasting is an urgent issue in correspondence organizations. Multicast is one of the effective methods in MANET. In multicasting, information parcels from one hub are communicated to a bunch of recipient hubs all at once, at a similar time. In this research work, Failure Node Detection and Efficient Node Localization in a MANET situation are proposed. Localization in MANET is a main area that attracts significant research interest. Localization is a method to determine the nodes’ location in the communication network. A novel routing algorithm, which is used for Predicting and Recovering Link Failure Localization using a Genetic Algorithm with Competitive Swarm Optimization (PRLFL-GACSO) Algorithm is proposed in this study to calculate and recover link failure in MANET. The process of link failure detection is accomplished using mathematical modelling of the genetic algorithm and the routing is attained using the Competitive Swarm optimization technique. The result proposed MANET method makes use of the CSO algorithm, which facilitates a well-organized packet transfer from the source node to the destination node and enhances DSR routing performance. Based on node movement, link value, and endwise delay, the optimal route is found. The main benefit of the PRLFL-GACSO Algorithm is it achieves multiple optimal solutions over global information. Further, premature convergence is avoided using Competitive Swarm Optimization (CSO). The suggested work is measured based on the Ns simulator. The presentation metrix are PDR, endwise delay, power consumption, hit ratio, etc. The presentation of the proposed method is almost 4% and 5% greater than the present TEA-MDRP, RSTA-AOMDV, and RMQS-ua methods. After, the suggested method attains greater performance for detecting and recovering link failure. In future work, the hybrid multiway routing protocols are presented to provide link failure and route breakages and liability tolerance at the time of node failure, and it also increases the worth of service aspects, respectively

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol
    • …
    corecore