26,125 research outputs found

    Split Sampling: Expectations, Normalisation and Rare Events

    Full text link
    In this paper we develop a methodology that we call split sampling methods to estimate high dimensional expectations and rare event probabilities. Split sampling uses an auxiliary variable MCMC simulation and expresses the expectation of interest as an integrated set of rare event probabilities. We derive our estimator from a Rao-Blackwellised estimate of a marginal auxiliary variable distribution. We illustrate our method with two applications. First, we compute a shortest network path rare event probability and compare our method to estimation to a cross entropy approach. Then, we compute a normalisation constant of a high dimensional mixture of Gaussians and compare our estimate to one based on nested sampling. We discuss the relationship between our method and other alternatives such as the product of conditional probability estimator and importance sampling. The methods developed here are available in the R package: SplitSampling

    Rare-event Simulation and Efficient Discretization for the Supremum of Gaussian Random Fields

    Full text link
    In this paper, we consider a classic problem concerning the high excursion probabilities of a Gaussian random field ff living on a compact set TT. We develop efficient computational methods for the tail probabilities P(supTf(t)>b)P(\sup_T f(t) > b) and the conditional expectations E(Γ(f)supTf(t)>b)E(\Gamma(f) | \sup_T f(t) > b) as bb\rightarrow \infty. For each ε\varepsilon positive, we present Monte Carlo algorithms that run in \emph{constant} time and compute the interesting quantities with ε\varepsilon relative error for arbitrarily large bb. The efficiency results are applicable to a large class of H\"older continuous Gaussian random fields. Besides computations, the proposed change of measure and its analysis techniques have several theoretical and practical indications in the asymptotic analysis of extremes of Gaussian random fields

    Fast performance estimation of block codes

    Get PDF
    Importance sampling is used in this paper to address the classical yet important problem of performance estimation of block codes. Simulation distributions that comprise discreteand continuous-mixture probability densities are motivated and used for this application. These mixtures are employed in concert with the so-called g-method, which is a conditional importance sampling technique that more effectively exploits knowledge of underlying input distributions. For performance estimation, the emphasis is on bit by bit maximum a-posteriori probability decoding, but message passing algorithms for certain codes have also been investigated. Considered here are single parity check codes, multidimensional product codes, and briefly, low-density parity-check codes. Several error rate results are presented for these various codes, together with performances of the simulation techniques

    Control Variates for Reversible MCMC Samplers

    Full text link
    A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible MCMC samplers. We propose the use of a specific class of functions as control variates, and we introduce a new, consistent estimator for the values of the coefficients of the optimal linear combination of these functions. The form and proposed construction of the control variates is derived from our solution of the Poisson equation associated with a specific MCMC scenario. The new estimator, which can be applied to the same MCMC sample, is derived from a novel, finite-dimensional, explicit representation for the optimal coefficients. The resulting variance-reduction methodology is primarily applicable when the simulated data are generated by a conjugate random-scan Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology in several directions are given, including certain families of Metropolis-Hastings samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding simulation examples are presented illustrating the utility of the proposed methods. All methodological and asymptotic arguments are rigorously justified under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table

    The adaptive nature of liquidity taking in limit order books

    Full text link
    In financial markets, the order flow, defined as the process assuming value one for buy market orders and minus one for sell market orders, displays a very slowly decaying autocorrelation function. Since orders impact prices, reconciling the persistence of the order flow with market efficiency is a subtle issue. A possible solution is provided by asymmetric liquidity, which states that the impact of a buy or sell order is inversely related to the probability of its occurrence. We empirically find that when the order flow predictability increases in one direction, the liquidity in the opposite side decreases, but the probability that a trade moves the price decreases significantly. While the last mechanism is able to counterbalance the persistence of order flow and restore efficiency and diffusivity, the first acts in opposite direction. We introduce a statistical order book model where the persistence of the order flow is mitigated by adjusting the market order volume to the predictability of the order flow. The model reproduces the diffusive behaviour of prices at all time scales without fine-tuning the values of parameters, as well as the behaviour of most order book quantities as a function of the local predictability of order flow.Comment: 40 pages, 14 figures, and 2 tables; old figure 12 removed. Accepted for publication on JSTA

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator
    corecore